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1 Uniform distribution

Let X be a r.v. with uniform distribution X ∼ U(0, θ).
A random sample gave the following values: 5.5; 3.2; 4, 8, 5.3; 3.8 and 5.0. Obtain
the likelihood function and one or more appropriate interval(s) specifying the form of
obtaining.

<r code>
data <- c(5.5, 3.2, 4.8, 5.3, 3.8, 5)

The likelihood of a Uniform(0, θ) is

L(θ) = θ−n, for xi < θ for all i

= θ−n, for θ > x(n),

and equal to zero otherwise.
Given the data above, we get x(n) = 5.5 and the likelihood is shown in Figure 1, to-

gether with some intervals.

<r code>
lkl.unif <- function(theta, data) {

n <- length(data) ; xn <- max(data)
# this next step, in the way presented, isn't very efficient, since I'll
# compute the likelihood for all theta's and then, if necessary, convert to
# zero. however, since we have here a very simple likelihood (and this
# notation is extremely clear, btw), I keep in this way
lkl = theta**(-n)*{theta >= xn}
return(lkl)

}
theta.seq <- seq(4, 12, length.out = 100)
lklseq.unif <- lkl.unif(theta.seq, data)

par(mfrow = c(1, 2)) # plot window definition (one row, two columns)
# plotting the normalized likelihood function to have unit maximum
plot(theta.seq, lklseq.unif/max(lklseq.unif), type = "l",

xlab = expression(theta), ylab = "Likelihood")
# probability-based interval -----------------------------------------------------
# cutoff's corresponding to a 95\% and 99\% confidence interval for the mean
cuts <- c(.15, .04) * lkl.unif(max(data), data) / max(lklseq.unif)
abline(h = cuts, lty = 2:3)
# uniroot.all finds the zeros, so we need to subtract the cutoff point from
# the likelihood to be able to find the points where the likelihood is cut
ic.lkl.unif <- function(theta, cut, ...) {

lkl.unif(theta, ...)/max(lklseq.unif) - cut
}
ic.95.prob <- rootSolve::uniroot.all(ic.lkl.unif, range(theta.seq),
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data = data, cut = cuts[1])
ic.99.prob <- rootSolve::uniroot.all(ic.lkl.unif, range(theta.seq),

data = data, cut = cuts[2])
abline(v = ic.95.prob, lty = 2) ; abline(v = ic.99.prob, lty = 3)

plot(theta.seq, lklseq.unif/max(lklseq.unif), type = "l",
xlab = expression(theta), ylab = "Likelihood")

# pure likelihood interval -------------------------------------------------------
# cutoff's corresponding to a 95\% and 99\% confidence interval for the mean
cuts <- c(.05, .01) * lkl.unif(max(data), data) / max(lklseq.unif)
abline(h = cuts, lty = 2:3)

ic.95.pure <- rootSolve::uniroot.all(ic.lkl.unif, range(theta.seq),
data = data, cut = cuts[1])

ic.99.pure <- rootSolve::uniroot.all(ic.lkl.unif, range(theta.seq),
data = data, cut = cuts[2])

abline(v = ic.95.pure, lty = 2) ; abline(v = ic.99.pure, lty = 3)
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Figure 1: Likelihood function of θ in Uniform(0, θ) based on x(6) = 5.5. In the left, like-
lihood intervals at 15% (dashed line) and 4% (dotted line) cutoff. In the right,
likelihood intervals at 5% (dashed line) and 1% (dotted line) cutoff. These cutoffs
correspond, in both sides, to a 95% and 99% confidence interval, respectively.

In both graphs of Figure 1 we have two confidence intervals for θ, one corresponding
to a 95% confidence interval (dashed line) and one corresponding to a 99% confidence
interval for the mean (dotted line). In the left we have a probability-based likelihood
interval, in the right we have a pure likelihood interval.
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The left ones are bad intervals, since they’re based in a large-sample theory that results
in an exact interval for the Gaussian case, in a good approximation for a reasonably regular
case, and as we can see by the figure... here we doesn’t have a regular likelihood (the
likelihood isn’t well approximated by a quadratic function), thus, here this interval should
not be so good.

Explaining better how we arrived in these intervals:
For a normalized likelihood, L(θ)/L(θ̂), we have the following Wilk’s likelihood
ratio statistic, defined as W

W ≡ 2 log
L(θ̂)
L(θ)

∼ χ2
1.

Its χ2 distribution is exact only in the normal mean model, and approximately true
when the likelihood is reasonably regular.

Based in this Wilk’s statistic we are able to find the probability that the likelihood
interval covers θ,

Pr
{

L(θ)
L(θ̂)

> c
}

= Pr
{

2 log
L(θ)
L(θ̂)

< −2 log c
}

= Pr{χ2
1 < −2 log c}.

So, if for some 0 < α < 1 we choose a cutoff

c = e−
1
2 χ2

1,(1−α) ,

where χ2
1,(1−α) is the 100(1− α) percentile of χ2

1.
For α = 0.05 and 0.01 we have a cutoff c = 0.15 and 0.04, that corresponds to a 95%
and 99% confidence interval, respectively. �

Having the cutoff values we need now to find the interval values, i.e., in which points
the cutoff horizontal line cuts the likelihood.
For this purpose we use the function rootSolve::uniroot.all.

A likelihood interval at 15% and 4% cutoff for θ are (5.5, 7.545) and (5.5, 9.405).
Already on the right side of Figure 1 we have a more coherent, let’s say, confidence

interval for the Uniform likelihood. While the likelihood isn’t regular, it is still possible to
provide an exact theoretical justification for a confidence interval interpretation. Now

Pr
{

L(θ)
L(θ̂)

> c
}

= Pr
{X(n)

θ
> c1/n

}
= 1− Pr

{X(n)

θ
< c1/n

}
= 1− (c1/n)n = 1− c.

So the likelihood interval with cutoff c is a 100(1− c)% confidence interval.
A likelihood interval at 15% and 4% cutoff for θ are (5.5, 9.062) and (5.5, 11.849).
Comparing the obtained intervals we see a broader range with the pure likelihood

intervals. In other words, with the pure likelihood intervals we see a higher uncertainty
than with the (not so recommended here) probability-based likelihood intervals.
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For doing this exercise I read and used it Pawitan’s book:

@book{pawitan,
author = {Yudi Pawitan},
title = {In All Likelihood:

Statistical Modelling and Inference Using Likelihood},
year = {1991},
publisher = {Oxford University Press},
address = {Great Clarendon Street, Oxford OX2 6DP},
}

2 Poisson distribution

Let X be a r.v. of a Poisson distribution (X ∼ P(λ)) for which the following random
sample was obtained: (3, 1, 0, 2, 1, 1, 0, 0).

<r code>
data <- c(3, 1, 0, 2, 1, 1, 0, 0)

(a) Obtain the likelihood function, its quadratic approximation and intervals for λ.

The likelihood and the log-likelihood of a Poisson(λ) is

L(λ) =
n

∏
i=1

e−λλxi

xi!
and log L(λ) = l(λ) = −nλ + log λ

n

∑
i=1

xi −
n

∑
i=1

log xi!.

We work here with the log-likelihood to make our life easier, since the computations are much
simpler in the log scale.

By computing the Score (derivative of l(λ) wrt to λ) and making it equal to zero,
we find the MLE λ̂ = x̄. Computing the second derivative we find the observed
information

IO(λ) =
nx̄
λ2 → IO(λ̂) =

n
x̄

.

A graph of the Poisson log-likelihood is provided in black in Figure 2.

Doing a quadratic approximation (Taylor expansion of second order) in l(λ) around
λ̂ we have

l(λ) ≈ l(λ̂) + (λ− λ̂)l′(λ̂) +
1
2
(λ− λ̂)2l′′(λ̂)

(the Score is zero at the MLE)

= l(λ̂) +
1
2
(λ− λ̂)2l′′(λ̂) = l(λ̂) +

1
2
(λ− λ̂)2 IO(λ̂).
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A graph of the quadratic approximation of the Poisson log-likelihood is provided in
gray in Figure 2. There we can see how good is the approximation around the maxi-
mum likelihood estimator (MLE). Here the sample size is very small, the idea is that
as the sample size increase the quality, in this case the range, of the approximation
also increase. This should happen because as the sample size increase the Poisson
likelihood should be more symmetric.

In the topright graph of Figure 2 we have two intervals for λ.

<r code>

# likelihood ---------------------------------------------------------------------
lkl.poi <- function(lambda, data) {

n <- length(data)
# log-likelihood ignoring irrelevant constant terms
lkl = -n * lambda + sum(data) * log(lambda)
return(lkl)

}
lambda.seq <- seq(0, 4.5, length.out = 100)
lklseq.poi <- lkl.poi(lambda.seq, data)

layout(matrix(c(1, 3, 2, 3), 2, 2), heights = c(1.5, 1)) # plot window definition
plot(lambda.seq, lklseq.poi, type = "l",

xlab = expression(lambda), ylab = "log-likelihood")
lambda.est <- mean(data) # MLE
abline(v = lambda.est, lty = 3)
# quadratic approximation --------------------------------------------------------
quadprox.poi <- function(lambda, lambda.est, data) {

n <- length(data)
obs.info <- n / lambda.est # observed information
lkl.poi(lambda.est, data) - .5 * obs.info * (lambda - lambda.est)**2

}
curve(quadprox.poi(x, lambda.est, data), col = "darkgray", add = TRUE)
legend(2.4, -6.25, c("log-like", "Quadratic\napprox.", "MLE"),

col = c(1, "darkgray", 1), lty = c(1, 1, 3), bty = "n")
# intervals for lambda -----------------------------------------------------------
plot(lambda.seq, lklseq.poi, type = "l",

xlab = expression(lambda), ylab = "log-likelihood")
curve(quadprox.poi(x, lambda.est, data), col = "darkgray", add = TRUE)
abline(v = lambda.est, lty = 3)
## probability-based interval ----------------------------------------------------
# cutoff's corresponding to a 95\% confidence interval for the mean
cut <- log(.15) + lkl.poi(lambda.est, data) ; abline(h = cut, lty = 2)
ic.lkl.poi <- function(lambda, cut, ...) { lkl.poi(lambda, ...) - cut }
ic.95.prob <- rootSolve::uniroot.all(ic.lkl.poi, range(lambda.seq),

data = data, cut = cut)
arrows(x0 = ic.95.prob, y0 = rep(cut, 2),

x1 = ic.95.prob, y1 = rep(-25, 2), lty = 2, length = .1)
## wald confidence interval -----------------------------------------------------
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cut <- log(.15) + quadprox.poi(lambda.est, lambda.est, data)
abline(h = cut, lty = 2, col = "darkgray")
se.lambda.est <- sqrt(lambda.est / length(data))
wald.95 <- lambda.est + qnorm(c(.025, .975)) * se.lambda.est
arrows(x0 = wald.95, y0 = rep(cut, 2),

x1 = wald.95, y1 = rep(-25, 2), lty = 2, length = .1, col = "darkgray")
# a better look in the approximation around the MLE ------------------------------
lambda.seq <- seq(.8, 1.2, length.out = 25)
plot(lambda.seq, lkl.poi(lambda.seq, data), type = "l",

xlab = expression(lambda), ylab = "log-likelihood")
curve(quadprox.poi(x, lambda.est, data), col = "darkgray", add = TRUE)
abline(v = lambda.est, lty = 3)
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Figure 2: log-likelihood function and MLE of λ in Poisson(λ) based on data. In the topleft,
a quadratic approximation in gray. In the topright, two intervals for λ - one
based in the likelihood (in black) and one based in the quadratic approximation
(in gray). In the bottom we provide a better look in the quadratic approximation.
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In the topright, in black, we have a interval based in the likelihood, λ ∈ (0.459, 1.855),
but with a cutoff criterion based in a χ2 distribution. Thus, to have a nominal 95%
confidence interval we use a cutoff c = 15%. As we saw before, this interval is based
in a large-sample theory. Since we’re dealing here with a reasonable regular case, this
interval shows as a good approximation.

Still in the topright of Figure 2, in red we have a interval based in the quadratic approx-
imation of the log-likelihood, λ ∈ (0.307, 1.693). From the quadratic approximation
we get

log
L(λ)
L(λ̂)

≈ −1
2

IO(λ̂)(λ− λ̂)2,

that also follows a χ2 distribution, since we have a r.v. λ̂ normalized (with its ex-
pected value subtracted and divided by its variance) and squared. From this we get
the following exact (in the normal case) 95% confidence interval

λ̂± 1.96 IO(λ̂)
−1/2 (λ̂± 1.96 se(λ̂)).

In the nonnormal cases this is an approximate 95% CI.

The actual variance is IE(λ̂)
−1/2, but for the Poisson case the Fisher (expected) information is

equal to the observed one, IO(λ̂)
−1/2.

A very nice thing that we can see from this intervals is that a Wald interval (a ±
interval) corresponds to a cut in the quadratic approximation exactly in the same point
that the probability-based interval cuts the (log-)likelihood. Thus, as more regular the
likelihood, better will be the fit of the approximation and more reliable will be the
Wald interval.

(b) Repeat the previous question for reparametrization θ = log(λ).

By the invariance property of the MLE we have

λ̂ = x̄ ⇒ g(λ̂) = log λ̂ = θ̂ = log x̄ = g(x̄).

i.e., the MLE of θ̂ is log x̄.

By the Delta Method we compute the variance of θ̂,

V[θ] = V[g(λ)] =
[

∂

∂λ
g(λ)

]2

V[λ] =

[
1
λ

]2 λ

n
=

1
λ n

→ V[θ̂] =
1

x̄ n
.

From this we can take the observed information for the reparametrization

V[θ̂] = I−1
O (θ̂) = (x̄ n)−1.

Now we do, in the same manner, everything that we did in the previous letter.
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<r code>

# likelihood ---------------------------------------------------------------------
## we can still use the lkl.poi function, but now we do
## lambda = exp(theta),
## with theta being a real rate (positive or negative)
theta.seq <- seq(-2, 2, length.out = 100)
lklseq.poi <- lkl.poi(exp(theta.seq), data)

layout(matrix(c(1, 3, 2, 3), 2, 2), heights = c(1.5, 1)) # plot window definition
plot(theta.seq, lklseq.poi, type = "l",

xlab = expression(theta), ylab = "log-likelihood")
theta.est <- log(mean(data)) # MLE
abline(v = theta.est, lty = 3)
# quadratic approximation for the reparametrization ------------------------------
quadprox.poi.repa <- function(theta, theta.est, data) {

obs.info <- sum(data) # observed information
lkl.poi(exp(theta.est), data) - .5 * obs.info * (theta - theta.est)**2

}
curve(quadprox.poi.repa(x, theta.est, data), col = "darkgray", add = TRUE)

legend(-2.15, -27.5, c("log-like", "Quadratic\napprox.", "MLE"),
col = c(1, "darkgray", 1), lty = c(1, 1, 3), bty = "n")

# intervals for lambda -----------------------------------------------------------
plot(theta.seq, lklseq.poi, type = "l",

xlab = expression(theta), ylab = "log-likelihood")
curve(quadprox.poi.repa(x, theta.est, data), col = "darkgray", add = TRUE)
abline(v = theta.est, lty = 3)
## probability-based interval ----------------------------------------------------
# cutoff's corresponding to a 95\% confidence interval for the mean
cut <- log(.15) + lkl.poi(exp(theta.est), data) ; abline(h = cut, lty = 2)
ic.lkl.poi <- function(theta, cut, ...) {

lambda <- exp(theta)
lkl.poi(lambda, ...) - cut

}
ic.95.prob <- rootSolve::uniroot.all(ic.lkl.poi, range(theta.seq),

data = data, cut = cut)
arrows(x0 = ic.95.prob, y0 = rep(cut, 2),

x1 = ic.95.prob, y1 = rep(-43, 2), lty = 2, length = .1)
## wald confidence interval -----------------------------------------------------
cut <- log(.15) + quadprox.poi.repa(theta.est, theta.est, data)
abline(h = cut, lty = 2, col = "darkgray")

se.theta.est <- sqrt(1 / sum(data))
wald.95 <- theta.est + qnorm(c(.025, .975)) * se.theta.est

arrows(x0 = wald.95, y0 = rep(cut, 2),
x1 = wald.95, y1 = rep(-43, 2), lty = 2, length = .1, col = "darkgray")
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# a better look in the approximation around the MLE ------------------------------
theta.seq <- seq(-.75, .75, length.out = 25)
plot(theta.seq, lkl.poi(exp(theta.seq), data), type = "l",

xlab = expression(theta), ylab = "log-likelihood")
curve(quadprox.poi.repa(x, theta.est, data), col = "darkgray", add = TRUE)
abline(v = theta.est, lty = 3)
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Figure 3: log-likelihood function and MLE of θ in Poisson(λ = eθ) based on data. In the
topleft, a quadratic approximation in gray. In the topright, two intervals for
θ - one based in the likelihood (in black) and one based in the quadratic ap-
proximation (in gray). In the bottom we provide a better look in the quadratic
approximation.

We obtained here two intervals for θ. One based in a cut in the likelihood, θ ∈
(−0.778, 0.618) - in black on the topright of Figure 3, and one based in a cut in the
quadratic approximation of the likelihood, θ ∈ (−0.693, 0.693) - in gray on the topright
of Figure 3.
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With the parametrization θ = log λ the two intervals are closer than the ones obtained
for λ. i.e., for θ (with the use of the log) we get a more regular likelihood.

(c) Also obtain (by at least two different methods) confidence intervals for the param-
eter λ from the likelihood function (approximate or not) of θ.

<r code>

# likelihood ---------------------------------------------------------------------
theta.seq <- seq(-2, 2, length.out = 100)
lklseq.poi <- lkl.poi(exp(theta.seq), data)

plot(theta.seq, lklseq.poi, type = "l",
xlab = expression(theta), ylab = "log-likelihood")

abline(v = lambda.est, lty = 3)
# quadratic approximation for the reparametrization ------------------------------
curve(quadprox.poi.repa(x, theta.est, data), col = "darkgray", add = TRUE)
legend(-2.15, -25, c("log-like", "Quadratic\napprox.", "MLE"),

col = c(1, "darkgray", 1), lty = c(1, 1, 3), bty = "n")
# intervals for lambda -----------------------------------------------------------
## probability-based interval ----------------------------------------------------
arrows(x0 = exp(ic.95.prob), y0 = c(-9, -36.5),

x1 = exp(ic.95.prob), y1 = rep(-43, 2), lty = 2, length = .1)
## wald confidence interval -----------------------------------------------------
arrows(x0 = exp(wald.95), y0 = c(-9, -24),

x1 = exp(wald.95), y1 = rep(-43, 2), lty = 2, length = .1, col = "darkgray")
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Figure 4: log-likelihood function and quadratic approximation of θ, and MLE of λ in
Poisson(λ = eθ) based on data. In dashed, 95% confidence intervals for λ.
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Since the MLE has the invariance property, a very simple idea is: take the obtained
interval for θ and apply a transformation, λ = eθ. This simple idea is true for the
interval obtained via likelihood function, as we can see in Figure 4. The obtained
interval is the same that the one in letter a). However, this idea doesn’t work for the
interval based in the quadratic approximation.

n the letter a), via the quadratic approximation we got λ ∈ (0.307, 1.693). Here, apply-
ing the relation λ = eθ we get λ ∈ (0.5, 2). i.e., this shows that the invariance property
applies to the likelihood, not to the quadratic approximation of the likelihood.

3 Hypergeometric distribution

In order to obtain an audience estimate of a game without using ticket sales data or
stadium roulette records, special shirts were distributed to 300 supporters on condition
that they were used during a game. During the game 250 fans were randomly selected
and 12 of them had the shirt.

a) Obtain the likelihood function for the total number of supporters.

We have here a random variable, let’s say, X, representing the number of observed
successes, k. Here an observed success is select a fan using a special shirt. So, we have

X ∼ Hypergeometric(N, K = 300, n = 250),

with probability p = K/N.

N is the population size, that we want estimate. K is the unknown number of fans
using a special shirt, and n is the number of, randomly, selected fans.

Pr[X = k] =
(K

k)(
N−K
n−k )

(N
n )

Pr[X = 12] =
(300

12 )(
N−300
250−12)

( N
250)

=
300! 250!

288! 238! 12!
(N − 300)! (N − 250)!

(N − 538)! N!

= constant× (N − 300)! (N − 250)!
(N − 538)! N!

.

Since we already have a k, the likelihood is equal to Pr[X = k].
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L(N) = Pr[X = 12] = constant
(N − 300)! (N − 250)!

(N − 538)! N!

l(N) = log L(N) = log constant + log
(N − 300)! (N − 250)!

(N − 538)! N!

≈ log
(N − 300)! (N − 250)!

(N − 538)! N!
.

A plot of the likelihood is provided in Figure 5.

<r code>

# likelihood ---------------------------------------------------------------------
lkl.hypergeo <- function(N, n, K, k) {

l1 <- lgamma(N - K + 1)
l2 <- lgamma(N - n + 1)
l3 <- lgamma(N - K - n + k + 1)
l4 <- lgamma(N + 1)
lkl <- l1 + l2 - l3 - l4
return(lkl)

}
compute.lkl <- function(grid, n, K, k) {

size.grid = length(grid)
lkl.grid = numeric(size.grid)
i = 1
for (j in grid) {

lkl.grid[i] = lkl.hypergeo(N = j, n = n, K = K, k = k)
i = i + 1

}
return(lkl.grid)

}
# plotting
layout(matrix(c(0, 1, 1, 0,

2, 2, 3, 3), nrow = 2, byrow = TRUE)) # plot window definition

n.grid <- seq(3000, 17000, by = 20)
plot(n.grid, compute.lkl(n.grid, n = 250, K = 300, k = 12),

type = "l", xlab = "N", ylab = "log-likelihood")
abline(v = 6250, lty = 2)

n.grid <- seq(539, 1e4, by = 20)
plot(n.grid, compute.lkl(n.grid, n = 250, K = 300, k = 12),

type = "l", xlab = "N", ylab = "log-likelihood")
abline(v = 6250, lty = 2)

n.grid <- seq(5000, 8000, by = 10)
plot(n.grid, compute.lkl(n.grid, n = 250, K = 300, k = 12),

13



type = "l", xlab = "N", ylab = "log-likelihood")
abline(v = 6250, lty = 2)
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Figure 5: log-likelihood of N in Hypergeometric(N, K = 300, n = 250) based on k = 12. In
dashed, the MLE. Different ranges of N to have a better understanding of the
likelihood behaviour.

The MLE here is given by N̂ = bKn/kc = 6250.

Figure 5 present some very interesting behaviours.

In the top, going from N = 3000 to N = 17000 we can see clearly the likelihood
asymmetry. In the bottomleft, starting from the first valid possible value, 539, we see

14



basically nothing. i.e., we don’t see any possible curvature in the likelihood. In the
bottomright we focus around the MLE to see better the curvature. Around that point
we see a very small variation in the likelihood, 0.3, for a range of 3000 in N. This shows
how smooth is the curvature around the MLE in a large region.

b) Get the point estimate and the interval estimate, the latter by at least two different
methods.

<r code>

# point estimate -----------------------------------------------------------------
optimize(lkl.hypergeo, n = 250, K = 300, k = 12,

lower = 539, upper = 2e4, maximum = TRUE)

$maximum
[1] 6249.502

$objective
[1] -116.3481

Using the optimize routine to do the optimization we obtain N̂ = 6249.5, and a log-
likelihood of -116.35. This value for N̂ is practically equal to what the ML theory says,
N̂ = bKn/kc = 6250.

Next, we compute a quadratic approximation for the hypergeometric (log-)likelihood
followed by two intervals, one based in the likelihood, and a wald interval based in
the quadratic approximation. All this is presented in Figure 6.

<r code>

# quadratic approximation of the likelihood --------------------------------------
hess <- numDeriv:::hessian(lkl.hypergeo,

x = 6250, n = 250, K = 300, k = 12)
# quadratic approx.
quadprox.hypergeo <- function(N, N.est = 6250, n, K, k) {

obs.info <- as.vector(-hess) # observed information
lkl <- lkl.hypergeo(N.est, n, K, k)
lkl - .5 * obs.info * (N - N.est)**2

}
layout(matrix(c(1, 2, 3, 3), nrow = 2, byrow = TRUE),

heights = c(1.5, 1)) # plot window definition

# likelihood plot
n.grid <- seq(3000, 17000, by = 20)
plot(n.grid, compute.lkl(n.grid, n = 250, K = 300, k = 12),

type = "l", xlab = "N", ylab = "log-likelihood")
abline(v = 6250, lty = 3)
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# quadratic approximation plot
curve(quadprox.hypergeo(x, n = 250, K = 300, k = 12),

col = "darkgray", add = TRUE)

legend(10500, 318.25, c("log-like", "Quadratic\napprox.", "MLE"),
col = c(1, "darkgray", 1), lty = c(1, 1, 3), bty = "n")

# intervals for N ----------------------------------------------------------------
# first, we plot again the likelihood and the quadratic approx.
n.grid <- seq(2500, 12000, by = 20)

plot(n.grid, compute.lkl(n.grid, n = 250, K = 300, k = 12),
type = "l", xlab = "N", ylab = "log-likelihood")

abline(v = 6250, lty = 3)

curve(quadprox.hypergeo(x, n = 250, K = 300, k = 12),
col = "darkgray", add = TRUE)

## probability-based interval ----------------------------------------------------
# cutoff's corresponding to a 95\% confidence interval for N
cut <- log(.15) + lkl.hypergeo(6250, n = 250, K = 300, k = 12)
abline(h = cut, lty = 2)

ic.lkl.hypergeo <- function(grid, n = 250, K, k) {
compute.lkl(grid, n, K, k) - cut

}
ic.95.prob <- rootSolve::uniroot.all(ic.lkl.hypergeo, range(n.grid),

K = 300, k = 12)
arrows(x0 = ic.95.prob, y0 = rep(cut, 2),

x1 = ic.95.prob, y1 = rep(-124.7, 2),
lty = 2, length = .1)

## wald confidence interval ------------------------------------------------------
cut <- log(.15) + quadprox.hypergeo(6250, n = 250, K = 300, k = 12)
abline(h = cut, lty = 2, col = "darkgray")

se.n.est <- sqrt(as.vector(-1 / hess))
wald.95 <- 6250 + qnorm(c(.025, .975)) * se.n.est

arrows(x0 = wald.95, y0 = rep(cut, 2),
x1 = wald.95, y1 = rep(-124.7, 2),
lty = 2, length = .1, col = "darkgray")

# a better look in the approximation around the MLE ------------------------------
n.grid <- seq(5000, 8000, by = 10)

plot(n.grid, compute.lkl(n.grid, n = 250, K = 300, k = 12),
type = "l", xlab = "N", ylab = "log-likelihood")

abline(v = 6250, lty = 3)
curve(quadprox.hypergeo(x, n = 250, K = 300, k = 12),

col = "darkgray", add = TRUE)
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Figure 6: log-likelihood function and MLE of N in Hypergeometric(N, K = 300, n = 250)
based on k = 12. In the topleft, a quadratic approximation in gray. In the
topright, two intervals for N - one based in the likelihood (in black) and one
based in the quadratic approximation (in gray). In the bottom we provide a
better look in the quadratic approximation.

The quadratic approximation and the intervals were obtained in the same way that
in the exercises before, with the only difference that here the hessian was obtained
numerically, just for simplicity.

Based in a cut in the likelihood, we obtain (3848, 11386) as a 95% interval for the total
number of fans in the game. With the wald interval (quadratic approximation) we
obtain (2869, 9631) as a 95% interval. A considerable difference.

c) Repeat and compare the results if there were 500 shirts and 20 with shirts out of the
250.

The procedure here is exactly the same.

We have
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Pr[X = k] =
(K

k)(
N−K
n−k )

(N
n )

, Pr[X = 20] =
(500

20 )(
N−500
250−20)

( N
250)

=
500! 250!

480! 230! 20!
(N − 500)! (N − 250)!

(N − 730)! N!

= constant× (N − 500)! (N − 250)!
(N − 730)! N!

.

With likelihood

L(N) = Pr[X = 20] = constant
(N − 500)! (N − 250)!

(N − 730)! N!

l(N) = log L(N) = log constant + log
(N − 500)! (N − 250)!

(N − 730)! N!

≈ log
(N − 500)! (N − 250)!

(N − 730)! N!
.

In Figure 7 we provide the likelihood graphs and intervals for N.

The MLE is exactly the same that the one in the previous scenario, since

N̂ = bKn/kc = b300× 250 / 12c = b500× 250 / 20c = 6250.

• Based in a cut in the likelihood, we obtain (3848, 11386) as a 95% interval for the
total number of fans in the game.

• With the wald interval (quadratic approximation) we obtain (2869, 9631) as a 95%
interval for the total number of fans.

A considerable difference.

<r code>

# plotting -----------------------------------------------------------------------
layout(matrix(c(1, 2, 3, 3), nrow = 2, byrow = TRUE),

heights = c(1.5, 1)) # plot window definition
## likelihood --------------------------------------------------------------------
n.grid <- seq(3000, 17000, by = 20)

plot(n.grid, compute.lkl(n.grid, n = 250, K = 500, k = 20),
type = "l", xlab = "N", ylab = "log-likelihood")

abline(v = 6250, lty = 3)
## quadratic approximation -------------------------------------------------------
hess <- numDeriv:::hessian(lkl.hypergeo, x = 6250,
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n = 250, K = 500, k = 20)
curve(quadprox.hypergeo(x, n = 250, K = 500, k = 20),

col = "darkgray", add = TRUE)

legend(10500, 382.5, c("log-like", "Quadratic\napprox.", "MLE"),
col = c(1, "darkgray", 1), lty = c(1, 1, 3), bty = "n")

# intervals for N ----------------------------------------------------------------
# first, we plot again the likelihood and the quadratic approx.
n.grid <- seq(2750, 11000, by = 20)

plot(n.grid, compute.lkl(n.grid, n = 250, K = 500, k = 20),
type = "l", xlab = "N", ylab = "log-likelihood")

abline(v = 6250, lty = 3)

curve(quadprox.hypergeo(N = x, n = 250, K = 500, k = 20),
col = "darkgray", add = TRUE)

## probability-based interval ----------------------------------------------------
# cutoff's corresponding to a 95\% confidence interval for N
cut <- log(.15) + lkl.hypergeo(6250, n = 250, K = 500, k = 20)
abline(h = cut, lty = 2)

ic.95.prob <- rootSolve::uniroot.all(ic.lkl.hypergeo, range(n.grid),
K = 500, k = 20)

arrows(x0 = ic.95.prob, y0 = rep(cut, 2),
x1 = ic.95.prob, y1 = rep(-205, 2),
lty = 2, length = .1)

## wald confidence interval ------------------------------------------------------
cut <- log(.15) + quadprox.hypergeo(6250, n = 250, K = 500, k = 20)
abline(h = cut, lty = 2, col = "darkgray")

se.n.est <- sqrt(as.vector(-1 / hess))
wald.95 <- 6250 + qnorm(c(.025, .975)) * se.n.est

arrows(x0 = wald.95, y0 = rep(cut, 2),
x1 = wald.95, y1 = rep(-205, 2),
lty = 2, length = .1, col = "darkgray")

# a better look in the approximation around the MLE ------------------------------
n.grid <- seq(5000, 7500, by = 10)

plot(n.grid, compute.lkl(n.grid, n = 250, K = 500, k = 20),
type = "l", xlab = "N", ylab = "log-likelihood")

abline(v = 6250, lty = 3)

curve(quadprox.hypergeo(x, n = 250, K = 500, k = 20),
col = "darkgray", add = TRUE)
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Figure 7: log-likelihood function and MLE of N in Hypergeometric(N, K = 500, n = 250)
based on k = 20. In the topleft, a quadratic approximation in gray. In the
topright, two intervals for N - one based in the likelihood (in black) and one
based in the quadratic approximation (in gray). In the bottom we provide a
better look in the quadratic approximation.

Comparing with the previous scenario the intervals changed considerably, even with
MLE retain the same.

The likelihood shape is the same that before, just with a vertical increase. Before the
maximum log-likelihood estimate was around -116, now is around -194.

4 Gaussian distribution with interval data

The following independent observations were taken from one r.v. X ∼ N(µ, σ2).
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<r code>
• [1] 56.4 54.2 65.3 49.2 50.1 56.9 58.9 62.5 70.0 61.0

• another 5 observations are known to be less than 50.

• it is known that 3 other observations are greater than 65.

(a) Write the likelihood function.

The likelihood can be expressed as

L(θ) =

(
10

∏
i=1

f (xi)

)
× (F(50))5 × (1− F(65))3

=

(
10

∏
i=1

φ

(
yi − µ

σ

))
×
(

Φ
(

50− µ

σ

))5

×
(

1−Φ
(

65− µ

σ

))3

l(θ) =
10

∑
i=1

log φ

(
yi − µ

σ

)
+ 5 log Φ

(
50− µ

σ

)
+ 3 log

(
1−Φ

(
65− µ

σ

))
.

<r code>

# likelihood ---------------------------------------------------------------------
## if logsigma = TRUE, we do the parametrization using log(sigma)
lkl.norm <- function(par, xs, less.than, more.than, logsigma = FALSE) {

if (logsigma) par[2] <- exp(par[2])
l1 <- sum(dnorm(xs, mean = par[1], sd = par[2], log = TRUE))
l2 <- 5 * log(pnorm(less.than, mean = par[1], sd = par[2]))
l3 <- 3 * log(1 - pnorm(more.than, mean = par[1], sd = par[2]))
lkl <- l1 + l2 + l3
# we return the negative of the log-likelihood,
# since the optim routine performs a minimization
return(-lkl)

}

(b) Obtain estimates of maximum likelihood.

<r code>

# providing an initial guess based uniquely in the ten points sample
init.guess <- c(mean(data), sd(data))
# parameters estimation
(par.est <- optim(init.guess, lkl.norm, logsigma = FALSE,

xs = data, less.than = 65, more.than = 50)$par)

[1] 58.10630 5.66888
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µ̂ = 58.106, σ̂ = 5.669.

FYI: In the ten points sample we have x̄ = 58.45 and s2 = 6.527.

(c) Obtain profiles of likelihood.

First, we do the graph of the likelihood surface in the deviance scale, since this scale
is much more convenient. This requires the value of the likelihood evaluated in the
parameter estimates.

The deviance here is basically

D(θ) = −2(l(θ)− l(θ̂)),

with θ being the vector of parameters µ and σ.

In Figure 8 we have the likelihood surfaces for two parametrizations: σ and log σ.

<r code>

# deviance -----------------------------------------------------------------------
dev.norm <- function(theta, est, ...) {

# remember: here we have the negative of the log-likelihoods,
# so the sign the different
return(2 * (lkl.norm(theta, ...) - lkl.norm(est, ...)))

}
dev.norm.surf <- Vectorize(function(x, y, ...) dev.norm(c(x, y), ...))

par(mfrow = c(1, 2)) # plot window denifition, one row and two columns
## parametrization: sigma --------------------------------------------------------
mu.grid <- seq(52, 63.75, length.out = 100)
sigma.grid <- seq(3.25, 12.5, length.out = 100)

outer.grid <- outer(mu.grid, sigma.grid, FUN = dev.norm.surf, est = par.est,
xs = data, less.than = 65, more.than = 50)

contour.levels <- c(.99, .95, .9, .7, .5, .3, .1, .05)
contour(mu.grid, sigma.grid, outer.grid,

levels = qchisq(contour.levels, df = 2), labels = contour.levels,
xlab = expression(mu), ylab = expression(sigma))

# converting par.est to a matricial object
points(t(par.est), col = "darkgray", pch = 19, cex = .75)
## parametrization: log sigma ----------------------------------------------------
par.est <- optim(init.guess, lkl.norm, logsigma = TRUE,

xs = data, less.than = 65, more.than = 50)$par

outer.grid <- outer(mu.grid, log(sigma.grid), FUN = dev.norm.surf, est = par.est,
xs = data, logsigma = TRUE, less.than = 65, more.than = 50)
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contour.levels <- c(.99, .95, .9, .7, .5, .3, .1, .05)
contour(mu.grid, log(sigma.grid), outer.grid,

levels = qchisq(contour.levels, df = 2), labels = contour.levels,
xlab = expression(mu), ylab = expression(log(sigma)))

points(t(par.est), col = "darkgray", pch = 19, cex = .75)
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Figure 8: Deviances of (µ, σ) and (µ, log σ) for a Gaussian sample made of interval data.

From Figure 8 two things are important to mention. First, with interval data, the sur-
face doesn’t exhibit orthogonally between the parameters. Second, in the log parametriza-
tion of sigma we have better behavior in the surface.

Now, we obtain the likelihood profiles for each parameter. The profiles are presented
in Figure 9.

To obtain the likelihood profile for µ, let’s say, we need to create a grid of values of µ
and for each value of this grid find the value, let’s say, σ̂µ that maximizes the profile
likelihood. We do this below for µ and σ, the results can be seen in Figure 9.

<r code>

# profiles -----------------------------------------------------------------------
# optimizing one parameter per time (optimize routine: single par. optimization)
# we need to split the par argument in two
lkl.norm.profiles <- function(mu, sigma, xs, less.than, more.than) {

l1 <- sum(dnorm(xs, mean = mu, sd = sigma, log = TRUE))
l2 <- 5 * log(pnorm(less.than, mean = mu, sd = sigma))
l3 <- 3 * log(1 - pnorm(more.than, mean = mu, sd = sigma))
lkl <- l1 + l2 + l3
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return(lkl)} ; par(mfrow = c(1, 2)) # plot window definition
## mu ----------------------------------------------------------------------------
mu.grid <- seq(45, 69.25, length.out = 100)
# with the optimize routine we obtain two numbers:
# the optimal sigma for the given value of mu.grid, and the log-likelihood value
mu.perf <- matrix(0, nrow = length(mu.grid), ncol = 2)
for (i in 1:length(mu.grid)) {

mu.perf[i, ] <- unlist(
optimize(lkl.norm.profiles, lower = 0, upper = 50, mu = mu.grid[i],

xs = data, less.than = 65, more.than = 50, maximum = TRUE))}
plot(mu.grid, mu.perf[ , 2], type = "l",

xlab = expression(mu), ylab = expression(l(mu[sigma])))
abline(v = par.est[1], lty = 2)
## sigma -------------------------------------------------------------------------
sigma.grid <- seq(3.25, 13.75, length.out = 100)
sigma.perf <- matrix(0, nrow = length(sigma.grid), ncol = 2)
for (i in 1:length(sigma.grid)) {

sigma.perf[i, ] <- unlist(
optimize(lkl.norm.profiles, lower = 0, upper = 100, sigma = sigma.grid[i],

xs = data, less.than = 65, more.than = 50, maximum = TRUE))}
plot(sigma.grid, sigma.perf[ , 2], type = "l",

xlab = expression(sigma), ylab = expression(l(sigma[mu])))
# we apply the exponential, since we did log sigma optimization by last
abline(v = exp(par.est[2]), lty = 2)

45 50 55 60 65 70

−
44

−
40

−
36

µ

l(µ
σ)

4 6 8 10 12 14

−
39

−
37

−
35

σ

l(σ
µ)

Figure 9: Profile log-likelihoods for µ and σ for a Gaussian sample made of interval data.
In dashed, the respective MLE’s.

24



(d) Obtain the standard error estimates.

With the optim routine we obtain the hessian.

<r code>

init.guess <- c(mean(data), sd(data)) # initial guess
# parameters estimation, now also computing the hessian
(hess <- optim(init.guess, lkl.norm, xs = data,

less.than = 65, more.than = 50, hessian = TRUE)$hessian)

[,1] [,2]
[1,] 0.38190632 0.04403561
[2,] 0.04403561 0.80092515

And we know that the hessian, H(θ), is the negative of the observed information,
IO(θ), and that asymptotically the variance of θ̂ is IO(θ)

−1. Thus,

<r code>

(se <- diag(sqrt(1 / hess))) # standard error

[1] 1.618160 1.117388

The standard errors, se, are

se(µ̂) = 1.618, se(σ̂) = 1.117.

5 Gaussian regression

Consider the following data table (adapted/modified from Montgomery & Runger, 1994)
to which we wish to fit a simple linear regression model by relating the response vari-
able Y (purity in %) to an explanatory variable X (hydrocarbon level).

X 0.99 1.02 1.15 1.29 1.46 1.36 0.87 1.23 1.55 1.40
Y 99.01 89.05 91.43 93.74 96.73 94.45 87.59 91.77 99.42 93.65
X 1.19 1.15 0.98 1.01 1.11 1.20 1.26 1.32 1.43 0.95
Y 93.54 92.52 90.56 89.54 89.85 90.39 93.25 93.41 94.98 87.33

(a) Find the likelihood function.

<r code>

data <- data.frame(
x = c(.99, 1.02, 1.15, 1.29, 1.46, 1.36, .87, 1.23, 1.55, 1.4,

1.19, 1.15, .98, 1.01, 1.11, 1.2, 1.26, 1.32, 1.43, .95),
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y = c(99.01, 89.05, 91.43, 93.74, 96.73, 94.45, 87.59, 91.77, 99.42,
93.65, 93.54, 92.52, 90.56, 89.54, 89.85, 90.39, 93.25, 93.41,
94.98, 87.33))

plot(y ˜ x, data, xlab = "hydrocarbon level", ylab = expression("purity"˜("%")))
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Figure 10: Dispersion between hydrocarbon level × purity (%).

Assuming a Normal distribution for Y|X, we have the following log-likelihood, in
matricial form

l(θ; Y) = −n
2

log 2π − n log σ− 1
2σ2 ‖Y− Xβ‖2

= constant− n log σ− 1
2σ2 ‖Y− Xβ‖2 ,

were θ = [β0 β1 σ]>, β = [β0 β1]
>, and µi = β0 + β1xi.

(b) Find the estimates of maximum likelihood.

<r code>

# likelihood ---------------------------------------------------------------------
lkl.model.norm <- function(b0, b1, sigma, y, x, logsigma = FALSE) {

## if logsigma = TRUE, we do the parametrization using log(sigma)
if (logsigma) sigma <- exp(sigma)
mu <- b0 + b1 * x
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lkl <- sum(dnorm(y, mean = mu, sd = sigma, log = TRUE))
# we return the negative of the log-likelihood,
# since the optim routine performs a minimization
return(-lkl)

}
library(bbmle)
par.est <- mle2(lkl.model.norm,

start = list(b0 = min(data$y), b1 = 1.5, sigma = sd(data$y)),
data = list(y = data$y, x = data$x), method = "BFGS")

par.est@coef

b0 b1 sigma
77.988429 12.225489 2.343799

Just checking...

<r code>

lm(y ˜ x, data)$coef # beta_0 and beta_1

(Intercept) x
77.98996 12.22453

par.est@coef[[3]]**2 # sigmaˆ2

[1] 5.493392

(summary(lm(y ˜ x, data))$sigma**2) * (nrow(data) - 2) / nrow(data)

[1] 5.493386

Checked,X.

(c) Obtain the joint likelihood for the parameters β0 and β1:

i. considering σ fixed with value equal to its estimate.

<r code>
# deviance -----------------------------------------------------------------------
dev.model.norm <- function(beta, theta.est, ...) {

b0 <- beta[1] ; b1 <- beta[2]
b0.est <- theta.est[[1]] ; b1.est <- theta.est[[2]]
sigma.est <- theta.est[[3]]
lkl.grid <- lkl.model.norm(b0, b1, sigma.est, ...)
lkl.est <- lkl.model.norm(b0.est, b1.est, sigma.est, ...)
lkl.diff <- lkl.grid - lkl.est
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# remember: here we have the negative of the log-likelihoods,
# so the sign is different
return(2 * lkl.diff)

}
# deviance, vectorized version ---------------------------------------------------
dev.model.norm.surf <- Vectorize(function(a, b, ...) dev.model.norm(c(a, b), ...))
# deviance contour, plotting -----------------------------------------------------
b0.grid <- seq(67.5, 88.5, length.out = 100)
b1.grid <- seq(3.5, 21, length.out = 100)

outer.grid <- outer(b0.grid, b1.grid, FUN = dev.model.norm.surf,
theta.est = par.est@coef, y = data$y, x = data$x)

contour.levels <- c(.99, .95, .9, .7, .5, .3, .1, .05)
contour(b0.grid, b1.grid, outer.grid,

levels = qchisq(contour.levels, df = 2), labels = contour.levels,
xlab = expression(beta[0]), ylab = expression(beta[1]))

# converting par.est@coef to a matricial object
points(t(par.est@coef[1:2]), col = 1, pch = 19, cex = .75)
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Figure 11: Deviance of (β0, β1) with σ fixed in it’s estimative, for a Gaussian regression.

ii. obtaining the profile likelihood (joint - 2D) with respect to σ.
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<r code>
# profile ------------------------------------------------------------------------
sigma.grid <- seq(1.7, 3.5, length.out = 100)
# with the optim routine we obtain three numbers:
# the estimates of beta_0, beta_1, and the log-likelihood value
beta.perf <- matrix(0, nrow = length(sigma.grid), ncol = 3)
for (i in 1:length(sigma.grid)) {

beta.perf[i, ] <- unlist(
mle2(lkl.model.norm, start = list(b0 = min(data$y), b1 = 1.5),

data = list(y = data$y, x = data$x, sigma = sigma.grid[i]),
method = "BFGS"

)@details[1:2])
}
plot(sigma.grid, -1 * beta.perf[ , 3], type = "l",

xlab = expression(sigma), ylab = "log-likelihood")
abline(v = par.est@coef[[3]], lty = 2)

2.0 2.5 3.0 3.5

−
48

.0
−

47
.0

−
46

.0

σ

lo
g−

lik
el

ih
oo

d

Figure 12: Profile log-likelihood for σ, for a Gaussian regression. In dashed, the MLE.

And how the β’s fluctuates across the grid of σ?

<r code>
summary(beta.perf[ , 1]) # beta_0

Min. 1st Qu. Median Mean 3rd Qu. Max.
77.98 77.99 77.99 77.99 78.00 78.01

summary(beta.perf[ , 2]) # beta_1
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Min. 1st Qu. Median Mean 3rd Qu. Max.
12.21 12.22 12.22 12.22 12.22 12.23

Very few, as expected. Since the estimation of β doesn’t depend on σ.

(d) Obtain the profile likelihood for the parameters β0 and β1 individually.

<r code>

par(mfrow = c(1, 2)) # plot window definition, one row and two columns
# profiling ----------------------------------------------------------------------
coef.profile <- function(grid, coef = c("b0", "b1")) {

n <- length(grid)
prof <- numeric(n)
for (i in 1:n) {

prof[i] <- switch(
coef,
"b0" = mle2(lkl.model.norm, start = list(b1 = 1.5),

data = list(y = data$y, x = data$x, b0 = grid[i],
sigma = par.est@coef[[3]]),

method = "BFGS"
)@details$value,
"b1" = mle2(lkl.model.norm, start = list(b0 = min(data$y)),

data = list(y = data$y, x = data$x, b1 = grid[i],
sigma = par.est@coef[[3]]),

method = "BFGS"
)@details$value)

}
return((-1) * prof)

}
# beta_0 -------------------------------------------------------------------------
b0.grid <- seq(67.5, 88.5, length.out = 100)

plot(b0.grid, coef.profile(b0.grid, "b0"), type = "l",
xlab = expression(beta[0]), ylab = "log-likelihood")

abline(v = par.est@coef[[1]], lty = 2)
# beta_1 -------------------------------------------------------------------------
b1.grid <- seq(3.5, 21, length.out = 100)

plot(b1.grid, coef.profile(b1.grid, "b1"), type = "l",
xlab = expression(beta[1]), ylab = "log-likelihood")

abline(v = par.est@coef[[2]], lty = 2)
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Figure 13: Profile log-likelihoods for β0 and β1 for a Gaussian regression. In dashed,

MLE’s.

6 Poisson regression

Consider a sample of a r.v. Y where it is assumed that Yi ∼ P(λi) where the parameter
λi is described by a function of an explanatory variable log(λi) = β0 + β1xi with values
known from xi.
Simulated data with (β0 = 2, β1 = 0.5) are shown below.

Y 10 15 11 37 70 19 12 12 13 88
X 1.7 1.5 0.5 2.8 4.4 1.8 0.4 0.7 1.3 5.1

<r code>
data <- data.frame(y = c(10, 15, 11, 37, 70, 19, 12, 12, 13, 88),

x = c(1.7, 1.5, .5, 2.8, 4.4, 1.8, .4, .7, 1.3, 5.1))
plot(y ˜ x, data)
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Figure 14: Dispersion between the variables Y and X.

(a) Obtain the graph of the likelihood function indicating the position of the true val-
ues of the parameters.

The log-likelihood is given by

l(λ) = −nλ + log λ
n

∑
i=1

yi −
n

∑
i=1

log yi! , λi = exp{β0 + β1xi}.

<r code>

# likelihood ---------------------------------------------------------------------
lkl.model.poi <- function(b0, b1, data) {

n <- nrow(data)
lambda <- exp(b0 + b1 * data$x)
lkl <- sum(dpois(data$y, lambda = lambda, log = TRUE))
# we return the negative of the log-likelihood,
# since the optim routine performs a minimization
return(-lkl)

}
# deviance -----------------------------------------------------------------------
dev.model.poi <- function(beta, beta.est, ...) {

b0 <- beta[1] ; b1 <- beta[2]
b0.est <- beta.est[1] ; b1.est <- beta.est[2]
lkl.grid <- lkl.model.poi(b0, b1, ...)
lkl.est <- lkl.model.poi(b0.est, b1.est, ...)

32



lkl.diff <- lkl.grid - lkl.est
# remember: here we have the negative of the log-likelihoods,
# so the sign the different
return(2 * lkl.diff)

}
# deviance, vectorized version ---------------------------------------------------
dev.model.poi.surf <- Vectorize( function(a, b, ...) dev.model.poi(c(a, b), ...) )
# deviance contour, plotting -----------------------------------------------------
b0.grid <- seq(1.625, 2.475, length.out = 100)
b1.grid <- seq(.375, .6, length.out = 100)

outer.grid <- outer(b0.grid, b1.grid, FUN = dev.model.poi.surf,
beta.est = c(2, .5), data = data)

contour.levels <- c(.99, .95, .9, .7, .5, .3, .1, .05)
contour(b0.grid, b1.grid, outer.grid,

levels = qchisq(contour.levels, df = 2), labels = contour.levels,
xlab = expression(beta[0]), ylab = expression(beta[1]))

# true parameter values
points(c(2, .5), pch = 19, cex = .75)
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Figure 15: Deviance of (β0, β1) for a Poisson regression based on data.
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(b) Obtain the likelihood profiles of the parameters.

<r code>

par(mfrow = c(1, 2)) # plot window definition, one row and two columns
# profiling ----------------------------------------------------------------------
coef.profile <- function(grid, coef = c("b0", "b1")) {

n <- length(grid) ; prof <- numeric(n)
for (i in 1:n) {

# for some points can happen that the hessian not be invertible
tryCatch({ # with tryCatch we can skip these points

prof[i] <- switch(
coef,
"b0" = mle2(lkl.model.poi, start = list(b1 = .5),

data = list(data = data, b0 = grid[i]),
method = "BFGS")@details$value,

"b1" = mle2(lkl.model.poi, start = list(b0 = min(data$y)),
data = list(data = data, b1 = grid[i]),
method = "BFGS")@details$value)},

warning = function(w) w)}
return((-1) * prof)}

# beta_0 -------------------------------------------------------------------------
b0.grid <- seq(1.25, 2.75, length.out = 100)
plot(b0.grid, coef.profile(b0.grid, "b0"), type = "l", xlab = expression(beta[0]),

ylab = "log-likelihood") ; abline(v = 2, lty = 2)
# beta_1 -------------------------------------------------------------------------
b1.grid <- seq(.3, .675, length.out = 100)
plot(b1.grid, coef.profile(b1.grid, "b1"), type = "l", xlab = expression(beta[1]),

ylab = "log-likelihood") ; abline(v = .5, lty = 2)
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Figure 16: Profile log-likelihoods for β0 and β1 for a Poisson regression. In dashed, MLE’s.
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(c) Get estimates.

<r code>

(par.est <- mle2(lkl.model.poi, start = list(b0 = min(data$y), b1 = 0),
data = list(data = data), method = "BFGS"))

Call:
mle2(minuslogl = lkl.model.poi, start = list(b0 = min(data$y),

b1 = 0), method = "BFGS", data = list(data = data))

Coefficients:
b0 b1

2.0675572 0.4816563

Log-likelihood: -27.86

(d) Get intervals (use different methods).

<r code>

par(mfrow = c(2, 1)) # plot window definition, two rows and one column
library(rootSolve) # uniroot.all function
library(numDeriv) # hessian function
# beta_0 -------------------------------------------------------------------------
## first, plotting the profile with point estimates ------------------------------
plot(b0.grid, coef.profile(b0.grid, "b0"), type = "l",

xlab = expression(beta[0]), ylab = "log-likelihood")
abline(v = 2, lty = 3) ; abline(v = par.est@coef[1], lty = 2)
## intervals ---------------------------------------------------------------------
### probability-based interval ---------------------------------------------------
# cutoff's corresponding to a 95\% confidence interval for beta
# minus, since lkl.model.poi return -lkl
cut <- log(.15) - par.est@details$value ; abline(h = cut, lty = 2)
# finding the cutoff values
ic.poi <- function(grid, coef = c("b0", "b1")) {

lkl.prof <- switch(
coef,
"b0" = mle2(lkl.model.poi, start = list(b1 = 0),

data = list(data = data, b0 = grid), method = "BFGS"
)@details$value,
"b1" = mle2(lkl.model.poi, start = list(b0 = min(data$y)),

data = list(data = data, b1 = grid), method = "BFGS"
)@details$value)

(-1) * lkl.prof - cut}
# for some "mysterious" reason the uniroot.all
# doesn't work here, but uniroot works perfectly
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ic.95.prob.b0 <- c(uniroot(ic.poi, c(1, par.est@coef[1]), "b0")$root,
uniroot(ic.poi, c(par.est@coef[1], 3), "b0")$root)

arrows(x0 = ic.95.prob.b0, y0 = rep(cut, 2),
x1 = ic.95.prob.b0, y1 = rep(-43.5, 2), lty = 2, length = .1)

### wald confidence interval -----------------------------------------------------
# quadratic approximation
qa.coef.poi <- function(grid, coef = c("b0", "b1")) {

coef.hat <- switch(coef, "b0" = par.est@coef[1], "b1" = par.est@coef[2])
lkl.prof <- coef.profile(coef.hat, coef)
hess <- hessian(coef.profile, x = coef.hat, coef = coef)
n <- length(grid) ; qa <- numeric(n)
for (i in 1:n) qa[i] <- lkl.prof + .5 * hess * (grid[i] - coef.hat)**2
return(qa)}

qa.b0.poi <- qa.coef.poi(b0.grid, "b0") ; lines(b0.grid, qa.b0.poi, col = "darkgray")

cut <- log(.15) + qa.coef.poi(par.est@coef[1], "b0")
abline(h = cut, lty = 2, col = "darkgray")
# now, finding the cutoff values
ic.coef.qa.poi <- function(grid, coef) qa.coef.poi(grid, coef) - cut

wald.95.b0 <- uniroot.all(ic.coef.qa.poi, range(b0.grid), coef = "b0")
arrows(x0 = wald.95.b0, y0 = rep(cut, 2),

x1 = wald.95.b0, y1 = rep(-43.5, 2), lty = 2, length = .1, col = "darkgray")
### from the mle2 output we get the standard error of each parameter -------------
se.b0 <- summary(par.est)@coef[1, 2]
mle2.95.b0 <- par.est@coef[1] + qnorm(c(.025, .975)) * se.b0

arrows(x0 = mle2.95.b0, y0 = rep(cut, 2),
x1 = mle2.95.b0, y1 = rep(-43.5, 2), lty = 3, length = .1)

# beta_1 -------------------------------------------------------------------------
plot(b1.grid, coef.profile(b1.grid, "b1"), type = "l",

xlab = expression(beta[1]), ylab = "log-likelihood")
abline(v = .5, lty = 3) ; abline(v = par.est@coef[2], lty = 2)
## intervals ---------------------------------------------------------------------
### probability-based interval ---------------------------------------------------
abline(h = cut, lty = 2) # remember, the cutoff is the same
# for some "mysterious" reason the uniroot.all
# doesn't work here, but uniroot works perfectly
ic.95.prob.b1 <- c(uniroot(ic.poi, c(.2, par.est@coef[2]), "b1")$root,

uniroot(ic.poi, c(par.est@coef[2], .8), "b1")$root)
arrows(x0 = ic.95.prob.b1, y0 = rep(cut, 2),

x1 = ic.95.prob.b1, y1 = rep(-42, 2), lty = 2, length = .1)
### wald confidence interval -----------------------------------------------------
qa.b1.poi <- qa.coef.poi(b1.grid, "b1") ; lines(b1.grid, qa.b1.poi, col = "darkgray")
cut <- log(.15) + qa.coef.poi(par.est@coef[2], "b1")
abline(h = cut, lty = 2, col = "darkgray")
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wald.95.b1 <- uniroot.all(ic.coef.qa.poi, range(b1.grid), coef = "b1")
arrows(x0 = wald.95.b1, y0 = rep(cut, 2),

x1 = wald.95.b1, y1 = rep(-42, 2), lty = 2, length = .1, col = "darkgray")
### mle2 standard error of -------------------------------------------------------
se.b1 <- summary(par.est)@coef[2, 2]
mle2.95.b1 <- par.est@coef[2] + qnorm(c(.025, .975)) * se.b1

arrows(x0 = mle2.95.b1, y0 = rep(cut, 2),
x1 = mle2.95.b1, y1 = rep(-42, 2), lty = 3, length = .1)
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Figure 17: Profile log-likelihoods, in black, for β0 and β1 in a Poisson regression with some
intervals. In black dotted, the original parameter value. In black dashed, the
MLE. The gray curve is a quadratic approx. for the profile, with the gray dashed
arrows corresponding to its 95% interval. The black dashed arrows correspond
to the 95% interval based in a cut in the likelihood. The black dotted arrows
correspond to the 95% interval based in the mle2 output.
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By the amount of code provided in this question, we can see that isn’t so straight-
forward to obtain intervals and quadratic approximations of profiled likelihoods of
parameters.

A very nice and interesting thing that we can see in Figure 17 is how all the three
obtained intervals match. A brief, but enough, description is already given in the
Figure caption, and for more details, you have the provided code.

(e) Compare the previous results with those provided by the glm() function and dis-
cuss the findings.

<r code>

# fitting the model via glm() ----------------------------------------------------
model.glm <- glm(y ˜ x, data, family = poisson)
# parameter estimates ------------------------------------------------------------
model.glm$coef

(Intercept) x
2.0675451 0.4816599

# at three decimal cases, the estimates are equal
round(model.glm$coef, 3) == round(par.est@coef, 3)

(Intercept) x
TRUE TRUE

# maximum log-likelihood ---------------------------------------------------------
logLik(model.glm)

'log Lik.' -27.85527 (df=2)

# at eight decimal cases, the max. log-likes are equal
round(logLik(model.glm), 8) == round(par.est@details[[2]] * (-1), 8)

[1] TRUE

# standard erros -----------------------------------------------------------------
summary(model.glm)$coef[ , 2]

(Intercept) x
0.13201821 0.03494989

## at six decimal cases, the standard errors are equal
round(summary(model.glm)$coef[ , 2], 6) == round(summary(par.est)@coef[ , 2], 6)

(Intercept) x
TRUE TRUE
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As a general reference guide for questions 2 to 6,
I read and used (in portuguese): www.leg.ufpr.br/mcie

@conference{mcie,
author = {Wagner Hugo Bonat and Paulo Justiniano RIbeiro Jr and

Elias Teixeira Krainski and Walmes Marques Zeviani},
title = {Computational Methods in Statistical Inference},
year = {2012},
publisher = {20th National Symposium on Probability and Statistics (SINAPE)},
address = {Jo\˜{a}o Pessoa - PB - Brazil},
}

7 Poisson regression (focus on the profile likelihood)

In the previous exercise, we computed the profile likelihood for each parameter of a sim-
ple Poisson regression with just one covariate, i.e., an intercept, β0, and an angular coeffi-
cient, β1.

Together with the profile and an interval based in a cut in this profile likelihood (let’s
say, a probability-based interval), we did a quadratic approximation in this profile like-
lihood. In the ”real” world with ”real” problems this isn’t a very smart thing to do, but
here just as an exercise, I believe that is extremely valid.

Using the same functions created before, we first show, in black, in Figure 18, the
profiles likelihood together with its respective quadratic approximations.

Now, something that we can look at is to the estimated likelihood (as Pawitan calls).
In the profiled one, for β0 let’s say, in a grid of β0’s, we estimate the β1’s and then get the
corresponding likelihoods. In the estimated one, as the name suggests, we fix β1 in it’s
estimate, and in a grid of β0’s, we get the likelihoods.

The estimated likelihood for each parameter and its correspondent quadratic approxi-
mation is computed and presented, in gray, in Figure 18.

<r code>
# lkl.est.poi: estimated poisson likelihood --------------------------------------
lkl.est.poi <- function(grid, coef = c("b0", "b1")) {

coef.hat <- switch(coef, "b0" = par.est@coef[2], "b1" = par.est@coef[1])
n <- length(grid)
lkl.est <- numeric(n)
for (i in 1:n) {

lkl.est[i] <- switch(
coef,
"b0" = lkl.model.poi(b0 = grid[i], b1 = coef.hat, data = data),
"b1" = lkl.model.poi(b0 = coef.hat, b1 = grid[i], data = data))

}
return((-1) * lkl.est)

}
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# qa.est.poi: quadratic approximation of the estimated poisson likelihood --------
qa.est.poi <- function(grid, coef = c("b0", "b1")) {

coef.hat <- switch(coef, "b0" = par.est@coef[1], "b1" = par.est@coef[2])
lkl.hat <- -par.est@min
hess <- switch(coef,

"b0" = -par.est@details$hessian[1],
"b1" = -par.est@details$hessian[4])

n <- length(grid)
qa <- numeric(n)
for (i in 1:n) {

qa[i] <- switch(coef,
"b0" = lkl.hat + .5 * hess * (grid[i] - coef.hat)**2,
"b1" = lkl.hat + .5 * hess * (grid[i] - coef.hat)**2)

}
return(qa)

}
# --------------------------------------------------------------------------------
par(mfrow = c(2, 1)) # plot window definition, two rows and one column
# beta_0 -------------------------------------------------------------------------
## first, plotting the profile with point estimate -------------------------------
b0.profile <- coef.profile(b0.grid, "b0")

plot(b0.grid, b0.profile, type = "l",
xlab = expression(beta[0]), ylab = "log-likelihood")

abline(v = par.est@coef[1], lty = 3)
## now, the quadratic approximation of the profile -------------------------------
lines(b0.grid, qa.b0.poi, lty = 2)
## performing and plotting the etimated likelihood -------------------------------
lkl.est.b0.poi <- lkl.est.poi(b0.grid, "b0")
lines(b0.grid, lkl.est.b0.poi, col = "darkgray")
## performing and plotting the quadratic approx. of the estimated likelihood -----
qa.est.b0.poi <- qa.est.poi(b0.grid, "b0")
lines(b0.grid, qa.est.b0.poi, col = "darkgray", lty = 2)
# beta_1 -------------------------------------------------------------------------
b1.profile <- coef.profile(b1.grid, "b1")

plot(b1.grid, b1.profile, type = "l",
xlab = expression(beta[1]), ylab = "log-likelihood")

abline(v = par.est@coef[2], lty = 3)

lines(b1.grid, qa.b1.poi, lty = 2)

lkl.est.b1.poi <- lkl.est.poi(b1.grid, "b1")
lines(b1.grid, lkl.est.b1.poi, col = "darkgray")

qa.est.b1.poi <- qa.est.poi(b1.grid, "b1")
lines(b1.grid, qa.est.b1.poi, col = "darkgray", lty = 2)
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Figure 18: Profile log-likelihoods and quadratic approximations, in black (solid and
dashed, respectively), for β0 and β1 in a Poisson regression. In dotted, the
MLE. Estimated log-likelihoods and quadratic approximations, in gray (solid
and dashed, respectively).

The first and important note that we can take from Figure 18, and that makes all the
possible sense, is how the estimated likelihood is narrow (compared with the profiled
one). The explanation for this is that in the estimated situation it’s assumed as known
one of the coefficients, fixing it at the MLE. In the other hand, the profile likelihood takes
into account that one of the coefficients is unknown. Hence, it’s sensible that the profile is
greater than the estimated.

Another important point to mention is about the manner that we compute the profile
likelihood. A function with this goal was made in the previous question, qa.coef.poi.
The important thing to note about these function is that the hessian there is computed
from the profile likelihood. This is inefficient, and not necessary. Instead, we can just take
the corresponding element in the variance-covariance matrix, invert, and use it. In other
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words, we don’t need to use the profile likelihood to compute a quadratic approximation
to the profile likelihood. We implement this in smart.qa.coef.poi.

<r code>
# qa: quadratic approximation ----------------------------------------------------
smart.qa.coef.poi <- function(model.mle2, coef = c("b0", "b1"), grid) {

coef.hat <- switch(coef, "b0" = model.mle2@coef[1], "b1" = model.mle2@coef[2])
lkl.hat <- (-1) * model.mle2@details$value
hess <- switch(coef,

"b0" = (-1) / model.mle2@vcov[1],
"b1" = (-1) / model.mle2@vcov[4])

n <- length(grid) ; qa <- numeric(n)
for (i in 1:n) {

qa[i] <- switch(coef,
"b0" = lkl.hat + .5 * hess * (grid[i] - coef.hat)**2,
"b1" = lkl.hat + .5 * hess * (grid[i] - coef.hat)**2)}

return(qa)}
# --------------------------------------------------------------------------------
layout(matrix(1:4, 2, 2), widths = c(1.5, 1)) # plot window definition
# beta_0 -------------------------------------------------------------------------
## first, plotting the profile with the point estimate ---------------------------
plot(b0.grid, b0.profile, type = "l", xlab = expression(beta[0]),

ylab = "log-likelihood") ; abline(v = par.est@coef[1], lty = 3)
## now, the "old" quadratic approximation of the profile -------------------------
lines(b0.grid, qa.b0.poi, lty = 2)
## and finally, the new and smart quadratic approximation of the profile ---------
sqa.b0.poi <- smart.qa.coef.poi(model.mle2 = par.est, coef = "b0", grid = b0.grid)
lines(b0.grid, sqa.b0.poi, col = "gray")
# beta_1 -------------------------------------------------------------------------
plot(b1.grid, b1.profile, type = "l", xlab = expression(beta[1]),

ylab = "log-likelihood") ; abline(v = par.est@coef[2], lty = 3)
lines(b1.grid, qa.b1.poi, lty = 2)

sqa.b1.poi <- smart.qa.coef.poi(model.mle2 = par.est, coef = "b1", grid = b1.grid)
lines(b1.grid, sqa.b1.poi, col = "gray")
# how much the quadratic approximations are similar? -----------------------------
compare.qas <- function(dp, coef = c("b0", "b1")) {

compare <- numeric(dp)
for (i in 1:dp) {

compare[i] <- switch(
coef,
"b0" = table(round(sqa.b0.poi, i) == round(qa.b0.poi, i))["TRUE"],
"b1" = table(round(sqa.b1.poi, i) == round(qa.b1.poi, i))["TRUE"])}

compare[is.na(compare)] <- 0
graph <- plot(compare, type = "h",

xlab = "decimal places", ylab = "% of matching")
return(invisible(graph))}

compare.qas(6, "b0") ; compare.qas(6, "b1")
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Figure 19: Profile log-likelihoods, solid line, for β0 and β1 in a Poisson regression. In dot-
ted, MLEs. Quadratic approx.’s of the profiles in black dashed and gray, with a
matching percentage between them considering six different decimal places.

In Figure 19 we see that the dashed matches with the gray line, i.e., the quadratic
approximations are equal. To see better how equal they’re, the right graphs of Figure 19
show the percentage of matching values (quadratic approximations of the profile log-
likelihoods) considering different levels of rounding. As a conclusion statement, they’re
quite equal. This completes and complement the last paragraph.

A third and last note is that to compute the quadratic approx. for the estimated like-
lihood we use the corresponding element of the information matrix. To compute the
quadratic approx. for the profile likelihood we use the inverse of that element in the
variance-covariance matrix, that is the inverse of the information matrix.

The insights for this exercise was taken from Pawitan’s book.

Last modification on ...

[1] "2019-08-09 10:15:58 -03"
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