Modeling the cumulative incidence function of clustered competing risk data

Henrique Laureano http://leg.ufpr.br/~henrique

December/2020

Clustered competing risk data

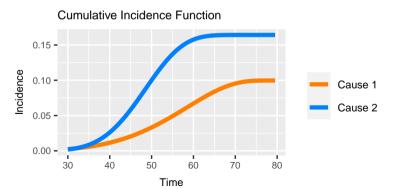
Key terms:

- » Clustered: groups with a dependence structure (e.g. families);
- » Causes competing by something.

Something?

- » Failure of an industrial or electronic component;
- » Occurence or cure of a disease;
- » Progress of a patient clinic state.

Independent of the application, always the same framework


Cluster	ID	Cause 1	Cause 2	Censorship	Time
1	1	Yes	No	No	10
1	2	No	No	Yes	8
2	1	No	No	Yes	7
2	2	No	Yes	No	5

What we do?

We model the probability of each **competing cause** along the time and taking into account the possible within-cluster dependence

... all this in terms of a

Main focus application: cancer incidence in twins

Clustered competing risks data

Lack Clusters? Families

Lack Family studies

Lack Twins data

Family studies ⇒ within-family dependence

That may reflect

- » Disease heritability;
- The impact of shared environmental effects;
 - » Parental effects: continuity of the phenotype across generations.

Challenges

- » The data is very simple, we just know the outcome (yes or no);
- With this, we have to be able to construct the cumulative incidence curves:
- And we have to accommodate the within-family dependence properly, that can happen in different manners;
- **>>**

Thank you

Wagner H. Bonat http://leg.ufpr.br/~wagner Paulo Justiniano Ribeiro Jr.

http://leg.ufpr.br/~paulojus

@hap_laureano