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Clustered competing risk data

Key terms:
Clustered: groups with a dependence structure (e.g. families);
Causes competing by something.

Something?

Failure of an industrial or electronic component;
Occurence or cure of a disease or some biological process;
Progress of a patient clinic state.

Independent of the application, always the same framework

Group ID  Cause 1l Cause2 Censorship Time Feature

1 1 Yes No No 10 A
1 2 No No Yes 8 A @
2 1 No No Yes 7 B
2 2 No Yes No 5 A
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Data designs

Failure time process Competing risk process Multistate process
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Modeling framework

We have to choose which scale we model the survival experience.
Usually, is the

hazard (failure rate) scale :  A(t | features) = A\o(t) x c(features).
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In the competing risk setting ...

a more attractive possibility is to work on the probability scale, focusing on the cause-specific
Cumulative Incidence Function (CIF)
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i.e.

CIF = P[ failure time < t, a given cause | features ]
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Main focus application: cancer incidence in twins

Clustered competing risks data
L Clusters? Families
LFamily studies
L Twins data

Family studies = within-family dependence

That may reflect

» Disease heritability;
» The impact of shared environmental effects;
» Parental effects:
continuity of the phenotype across generations.
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Our contribution: a hierarchical approach

Thinking on two competing causes
... for the outcome y;;: of a subject i, family j, in the time t, we have

Yije | {u1j, uaj, m1j, m2j} ~ Multinomial(pyit, p2ijt, P3ijt)

latent effects
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Contributions & challenges

» A clear and simpler modeling structure;

» There is no free lunch
Computational challenges overcame via an
efficient implementation and estimation routines;
» The data is very simple,
we just know the outcome (yes or no);

» We have to be able to build the CIF curves;

» And accommodate the within-family dependence properly,
that can happen in different manners;
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Thank you
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