Modeling the cumulative incidence function of clustered competing risks data: a multinomial GLMM approach

Semana Acadêmica de Estatística, UFPR

Henrique Laureano [\(.github.io\)](https://henriquelaureano.github.io)

IPPPP & LEG @ UFPR

September 13, 2021

Giving context: defining where we are and what we did

Object

• Handle clustered competing risks data (a kind of failure time data) through the cumulative incidence function (CIF).

Goal

• Perform maximum likelihood estimation in terms of a full likelihood formulation based on Cederkvist et al. [\(2019\)](#page-18-0)'s CIF specification (**Scheike's**).

Contribution

- The full likelihood formulation is in terms of a generalized linear mixed model (GLMM) a conditional approach (with fixed and random/latent effects);
- The optimization and inference are tacked down via an efficient model implementation with the use of *state-of-art* computational libraries (Kristensen et al. [\(2016\)](#page-18-1)'s TMB).

[Model](#page-4-0)

- [TMB: Template Model Builder](#page-10-0)
- [Simulation study](#page-12-0)

Clustered competing risk data

Key ideas:

1 Clustered: groups with a dependence structure (e.g. families);

Something?

- **Failure** of an industrial or electronic component;
- **Occurrence** or **cure** of a disease or some biological process;
- **2** Causes competing by *something*;
- **3** Occurrence time of this *something*.
	- **Progress** of a patient clinic state.

Independent of the application, always the same framework

[Model](#page-4-0)

[TMB: Template Model Builder](#page-10-0)

[Simulation study](#page-12-0)

Modeling clustered competing risks data

What? Why? How?

Probability scale → **Cause-specific CIF**

i.e., $CIF = \mathbb{P}$ failure time $\leq t$, a given cause | features & latent effects].

Common applications: *family studies*.

Keywords: *within-family/cluster dependence*; *age at disease onset*; *populations*.

Cederkvist et al. [\(2019\)](#page-18-0)'s CIF specification

For two competing causes of failure, the cause-specific CIFs are specified in the following manner

$$
F_k(t \mid \mathbf{x}, u_1, u_2, \eta_k) = \underbrace{\pi_k(\mathbf{x}, u_1, u_2)}_{\text{cluster-specific}} \times \underbrace{\Phi[w_k g(t) - \mathbf{x}\gamma_k - \eta_k]}_{\text{cluster-specific}}, \quad t > 0, \quad k = 1, 2, (1)
$$

with

$$
\mathbf{O} \; \pi_k(\mathbf{x}, \mathbf{u}) = \exp\{\mathbf{x}\beta_k + u_k\} / \left(1 + \sum_{m=1}^{K-1} \exp\{\mathbf{x}\beta_m + u_m\}\right), \quad k = 1, 2, \quad K = 3;
$$

2 Φ(·) is the cumulative distribution function of a standard Gaussian distribution;

8
$$
g(t) = \operatorname{arctanh}(2t/\delta - 1), \quad t \in (0, \delta), \quad g(t) \in (-\infty, \infty).
$$

In Cederkvist et al. (2019) , this CIF specification is modeled under a pairwise composite likelihood approach (Lindsay [1988;](#page-18-2) Varin, Reid, and Firth [2011\)](#page-18-3).

Our contribution: a full likelihood analysis

For two competing causes of failure, a subject *i*, in the cluster *j*, in time *t*, we have *yijt* | {*u*1*^j* , *u*2*^j* , η1*^j* , η2*^j* } ∼ Multinomial(*p*1*ijt* , *p*2*ijt* , *p*3*ijt*) latent effects $\sqrt{ }$ \mathbb{R} *u*1 *u*2 η1 η2 1 $\overline{}$ ∼ Multivariate Normal $\sqrt{ }$ $\overline{}$ $\sqrt{ }$ $\Bigg\}$ $\overline{0}$ 0 0 $\overline{0}$ 1 $\overline{}$, $\sqrt{ }$ $\begin{matrix} \end{matrix}$ $\sigma_{u_1}^2$ cov(*u*₁, *u*₂) cov(*u*₁, η_1) cov(*u*₁, η_2) $\sigma_{u_2}^2$ **cov** (u_2, η_1) **cov** (u_2, η_2) $σ_{η₁}²$ cov($η₁, η₂$) σ 2 η2 1 \setminus $\Bigg\}$ $p_{kijt} = \frac{\partial}{\partial t}$ ∂*t F^k* (*t* | *x*, *u*, η*^k*) $=\frac{\exp\{x_{kij}\beta_k + u_{kj}\}}{1-\frac{k-1}{2}}$ $1 + \sum_{m=1}^{K-1} \exp\{x_{mij}\beta_m + u_{mj}\}$ \times *W_k* $\frac{\delta}{\delta}$ $\frac{\delta}{2\delta t-2t^2}$ φ $\bigg(\mathsf{w}_k$ arctanh $\bigg(\frac{t-\delta/2}{\delta/2}$ $\delta/2$ $\left(-\mathbf{x}_{kij}\gamma_k - \eta_{kj}\right), \quad k = 1, 2.$ (2)

Marginal likelihood function for two competing causes

$$
L(\theta; y) = \prod_{j=1}^{J} \int_{\Re^4} \pi(y_j | r_j) \times \pi(r_j) \, dr_j
$$

\n
$$
= \prod_{j=1}^{J} \int_{\Re^4} \left\{ \prod_{j=1}^{n_j} \prod_{t=1}^{n_{ij}} \left(\frac{\left(\sum_{k=1}^{K} y_{kijt} \right)!}{y_{1ijt}! y_{2ijt}! y_{3ijt}!} \prod_{k=1}^{K} p_{kijt}^{y_{kijt}} \right) \right\} \times
$$

\nfixed effect component
\n
$$
\frac{(2\pi)^{-2} |\Sigma|^{-1/2} \exp \left\{ -\frac{1}{2} r_j^{\top} \Sigma^{-1} r_j \right\}}{\text{latent effect component}}
$$

\n
$$
= \prod_{j=1}^{J} \int_{\Re^4} \left\{ \prod_{\substack{i=1 \ i \neq 1}}^{n_j} \prod_{t=1}^{n_{ij}} p_{kijt}^{y_{kijt}} \right\} \underbrace{(2\pi)^{-2} |\Sigma|^{-1/2} \exp \left\{ -\frac{1}{2} r_j^{\top} \Sigma^{-1} r_j \right\}}_{\text{latent effect component}}
$$
\n(3)

with ρ_{kijt} from Equation [2](#page-8-0) and where $\theta = [\beta\ \gamma\ \bm{{w}\ \sigma^2\ \rho}]^\top$ is the parameters vector.

[Model](#page-4-0)

[TMB: Template Model Builder](#page-10-0)

[Simulation study](#page-12-0)

TMB: Template Model Builder

\triangle Kristensen et al. [\(2016\)](#page-18-1).

An R (R Core Team [2021\)](#page-18-4) package for the quickly implementation of complex random effect models through simple C++ templates.

Key features:

- **1** Automatic differentiation: *The state-of-art in derivatives computation*
- **2** Laplace approximation. *An efficient fashion to approximate the latent effect integrals*

[Model](#page-4-0)

[TMB: Template Model Builder](#page-10-0)

[Simulation study](#page-12-0)

Simulation study results

First of all, the **time**.

- In the most expensive scenarios (30K 4D Laplaces), **the complete model takes 30 min**. In a **full R** implementation with 10K 4D Laplaces, it **took 30hrs**. **TMB is fast**.
- We also did a Bayesian analysis via Stan/NUTS-HMC (Stan Development Team [2020\)](#page-18-5).
	- **1 week of parallelized processing** for a 2500 size 2 clusters scenario with tuned NUTS. This just reinforces the MCMC impracticability for some complex models.

Parameters estimation.

• The *non-complete* models fail to learn the data. They appear to be *not structured enough* to capture the data characteristics.

Simulation study results: High CIF scenario

CIF of failure cause 1

True curve in dashed black

CIF of failure cause 2

Simulation study results: Low CIF scenario

CIF of failure cause 1

True curve in dashed black

CIF of failure cause 2

Thanks for watching and have a great day

 $\mathcal F$ For more read Laureano [\(2021\)](#page-18-6) master thesis.

Special thanks to

PPGMNE Programa de Pós-Graduação em Métodos Numéricos em Engenharia

Joint work with Wagner H. Bonat <http://leg.ufpr.br/~wagner>

Paulo Justiniano Ribeiro Jr. <http://leg.ufpr.br/~paulojus>

[Model](#page-4-0)

- [TMB: Template Model Builder](#page-10-0)
- [Simulation study](#page-12-0)
- [References](#page-17-0)

References

Cederkvist, L., K. K. Holst, K. K. Andersen, and T. H. Scheike. 2019. "Modeling the Cumulative Incidence Function of Multivariate Competing Risks Data Allowing for Within-Cluster Dependence of Risk and Timing." *Biostatistics* 20 (2): 199–217.

Kristensen, K., A. Nielsen, C. W. Berg, H. J. Skaug, and B. M. Bell. 2016. "TMB: Automatic Differentiation and Laplace Approximation." *Journal of Statistical Software* 70 (5): 1–21.

Laureano, H. A. 2021. "Modeling the Cumulative Incidence Function of Clustered Competing Risks Data: A Multinomial Glmm Approach." Master's thesis, Federal University of Paraná (UFPR).

Lindsay, B. G. 1988. "Composite Likelihood Methods." *Comtemporary Mathematics* 80 (1): 221–39.

R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria.

Stan Development Team. 2020. "RStan: The R Interface to Stan." [https://mc-stan.org/.](https://mc-stan.org/)

Varin, C., N. Reid, and D. Firth. 2011. "An Overview of Composite Likelihood Methods." *Statistica Sinica* 21 (1): 5–42.