Modeling the cumulative incidence function of clustered competing risks data: a multinomial GLMM approach

Semana Acadêmica de Estatística, UFPR

Henrique Laureano (.github.io)

IPPPP & LEG @ UFPR

September 13, 2021

Giving context: defining where we are and what we did

Object

• Handle clustered competing risks data (a kind of failure time data) through the cumulative incidence function (CIF).

Goal

• Perform maximum likelihood estimation in terms of a full likelihood formulation based on Cederkvist et al. (2019)'s CIF specification (**Scheike's**).

Contribution

- The full likelihood formulation is in terms of a generalized linear mixed model (GLMM) a conditional approach (with fixed and random/latent effects);
- The optimization and inference are tacked down via an efficient model implementation with the use of *state-of-art* computational libraries (Kristensen et al. (2016)'s TMB).

2 Model

- **3** TMB: Template Model Builder
- O Simulation study
- **6** References

Clustered competing risk data

Key ideas:

 Clustered: groups with a dependence structure (e.g. families);

Something?

- Failure of an industrial or electronic component;
- Occurrence or cure of a disease or some biological process;

- 2 Causes competing by something;
- **3** Occurrence time of this *something*.
 - **Progress** of a patient clinic state.

Independent of the application, always the same framework

Cluster	ID	Cause 1	Cause 2	Censorship	Time	Feature
1	1	Yes	No	No	10	А
1	2	No	No	Yes	8	A
2	1	No	No	Yes	7	В
2	2	No	Yes	No	5	А

2 Model

3 TMB: Template Model Builder

O Simulation study

6 References

Modeling clustered competing risks data

What?

Why?

How?

$\textbf{Probability scale} \rightarrow \textbf{Cause-specific CIF}$

i.e., $CIF = \mathbb{P}[$ failure time $\leq t$, a given cause | features & latent effects].

Common applications: family studies.

4 Keywords: within-family/cluster dependence; age at disease onset; populations.

Cederkvist et al. (2019)'s CIF specification

For two competing causes of failure, the cause-specific CIFs are specified in the following manner

$$F_{k}(t \mid \boldsymbol{x}, u_{1}, u_{2}, \eta_{k}) = \underbrace{\pi_{k}(\boldsymbol{x}, u_{1}, u_{2})}_{\text{cluster-specific risk level}} \times \underbrace{\Phi[w_{k}g(t) - \boldsymbol{x}\gamma_{k} - \eta_{k}]}_{\text{cluster-specific failure time trajectory}}, \quad t > 0, \quad k = 1, 2, \quad (1)$$

with

1
$$\pi_k(\mathbf{x}, \mathbf{u}) = \exp\{\mathbf{x}\beta_k + u_k\} / \left(1 + \sum_{m=1}^{K-1} \exp\{\mathbf{x}\beta_m + u_m\}\right), \quad k = 1, 2, \quad K = 3;$$

2 $\Phi(\cdot)$ is the cumulative distribution function of a standard Gaussian distribution;

3
$$g(t) = \operatorname{arctanh}(2t/\delta - 1), \quad t \in (0, \delta), \quad g(t) \in (-\infty, \infty).$$

In Cederkvist et al. (2019), this CIF specification is modeled under a pairwise composite likelihood approach (Lindsay 1988; Varin, Reid, and Firth 2011).

Our contribution: a full likelihood analysis

For two competing causes of failure, a subject *i*, in the cluster *j*, in time *t*, we have $\sum_{i=1}^{n}$

 $y_{ijt} \mid \{u_{1j}, u_{2j}, \eta_{1j}, \eta_{2j}\} \sim \text{Multinomial}(p_{1ijt}, p_{2ijt}, p_{3ijt})$ latent effects $\begin{bmatrix} u_1 \\ u_2 \\ \eta_1 \\ \eta_2 \end{bmatrix} \sim \begin{array}{c} \text{Multivariate} \\ \text{Normal} \\ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u_1}^2 & \text{cov}(u_1, u_2) & \text{cov}(u_1, \eta_1) & \text{cov}(u_1, \eta_2) \\ \sigma_{u_2}^2 & \text{cov}(u_2, \eta_1) & \text{cov}(u_2, \eta_2) \\ \sigma_{\eta_1}^2 & \sigma_{\eta_2}^2 \\ & \sigma_{\eta_2}^2 \end{bmatrix} \right)$ $\boldsymbol{p}_{\boldsymbol{k}\boldsymbol{i}\boldsymbol{j}\boldsymbol{t}} = \frac{\partial}{\partial t} \boldsymbol{F}_{\boldsymbol{k}}(t \mid \boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\eta}_{\boldsymbol{k}})$ $=\frac{\exp\{\boldsymbol{x}_{kij}\beta_k+u_{kj}\}}{1+\sum_{m=1}^{K-1}\exp\{\boldsymbol{x}_{mii}\beta_m+u_{mi}\}}$ $\times w_k \frac{\delta}{2\delta t - 2t^2} \phi \left(w_k \operatorname{arctanh} \left(\frac{t - \delta/2}{\delta/2} \right) - \boldsymbol{x}_{kij} \gamma_k - \eta_{kj} \right), \quad k = 1, \ 2.$ (2)

Marginal likelihood function for two competing causes

$$L(\theta; \mathbf{y}) = \prod_{j=1}^{J} \int_{\Re^{4}} \pi(\mathbf{y}_{j} | \mathbf{r}_{j}) \times \pi(\mathbf{r}_{j}) \, \mathrm{d}\mathbf{r}_{j}$$

$$= \prod_{j=1}^{J} \int_{\Re^{4}} \left\{ \underbrace{\prod_{i=1}^{n_{j}} \prod_{t=1}^{n_{ij}} \left(\frac{(\sum_{k=1}^{K} \mathbf{y}_{kijt})!}{\mathbf{y}_{ijt}! \, \mathbf{y}_{2ijt}! \, \mathbf{y}_{3ijt}!} \prod_{k=1}^{K} p_{kijt}^{\mathbf{y}_{kijt}} \right)}_{\mathbf{k} + 1} \right\} \times \frac{1}{\mathbf{f}_{i} + 1} \left\{ \underbrace{(2\pi)^{-2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}\mathbf{r}_{j}^{\top} \Sigma^{-1} \mathbf{r}_{j}\right\}}_{\mathbf{l}_{i} + 1} \, \mathrm{d}\mathbf{r}_{j}}_{\mathbf{l}_{i} + 1} \right\}$$

$$= \prod_{j=1}^{J} \int_{\Re^{4}} \left\{ \underbrace{\prod_{i=1}^{n_{j}} \prod_{t=1}^{n_{ij}} \prod_{k=1}^{K} p_{kijt}^{\mathbf{y}_{kijt}}}_{\mathbf{f}_{i} + 1} \right\} \underbrace{(2\pi)^{-2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}\mathbf{r}_{j}^{\top} \Sigma^{-1} \mathbf{r}_{j}\right\}}_{\mathbf{l}_{i} + 1} \, \mathrm{d}\mathbf{r}_{j}, \quad (3)$$

with p_{kijt} from Equation 2 and where $\theta = [\beta \gamma \ w \ \sigma^2 \ \rho]^\top$ is the parameters vector.

2 Model

3 TMB: Template Model Builder

Output Simulation Study

6 References

TMB: Template Model Builder

Kristensen et al. (2016).

An R (R Core Team 2021) package for the quickly implementation of complex random effect models through simple C++ templates.

Key features:

- Automatic differentiation; *The state-of-art in derivatives computation*
- 2 Laplace approximation.
 An efficient fashion to approximate the latent effect integrals

2 Model

3 TMB: Template Model Builder

4 Simulation study

6 References

Simulation study results

First of all, the **time**.

- In the most expensive scenarios (30K 4D Laplaces), the complete model takes 30 min.
 In a full R implementation with 10K 4D Laplaces, it took 30hrs. TMB is fast.
- We also did a Bayesian analysis via Stan/NUTS-HMC (Stan Development Team 2020).
 - **1 week of parallelized processing** for a 2500 size 2 clusters scenario with tuned NUTS. This just reinforces the MCMC impracticability for some complex models.

Parameters estimation.

• The *non-complete* models fail to learn the data. They appear to be *not structured enough* to capture the data characteristics.

Simulation study results: High CIF scenario

CIF of failure cause 1

True curve in dashed black

CIF of failure cause 2

Simulation study results: Low CIF scenario

CIF of failure cause 1

True curve in dashed black RISK MODEL BLOCK-DIAG MODEL COMPLETE MODEL TIME MODEL 0.3 cs02-05k cs02-30k cs02-60k 0.2 cs05-05k cs05-30k cs05-60k 0.1 cs10-05k cs10-30k _ 0.0 cs10-60k _ 30 50 60 70 80 30 40 50 60 70 80 30 50 60 70 80 40 40 50 60 70 80 30 40 Time

CIF of failure cause 2

Thanks for watching and have a great day

For more read Laureano (2021) master thesis.

Special thanks to

PPGMNE Programa de Pós-Graduação em Métodos Numéricos em Engenharia

Joint work with Wagner H. Bonat

http://leg.ufpr.br/~wagner

Paulo Justiniano Ribeiro Jr. http://leg.ufpr.br/~paulojus

2 Model

- **3** TMB: Template Model Builder
- O Simulation study
- **5** References

References

Cederkvist, L., K. K. Holst, K. K. Andersen, and T. H. Scheike. 2019. "Modeling the Cumulative Incidence Function of Multivariate Competing Risks Data Allowing for Within-Cluster Dependence of Risk and Timing." *Biostatistics* 20 (2): 199–217.

Kristensen, K., A. Nielsen, C. W. Berg, H. J. Skaug, and B. M. Bell. 2016. "TMB: Automatic Differentiation and Laplace Approximation." *Journal of Statistical Software* 70 (5): 1–21.

Laureano, H. A. 2021. "Modeling the Cumulative Incidence Function of Clustered Competing Risks Data: A Multinomial Glmm Approach." Master's thesis, Federal University of Paraná (UFPR).

Lindsay, B. G. 1988. "Composite Likelihood Methods." Comtemporary Mathematics 80 (1): 221-39.

R Core Team. 2021. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria.

Stan Development Team. 2020. "RStan: The R Interface to Stan." https://mc-stan.org/.

Varin, C., N. Reid, and D. Firth. 2011. "An Overview of Composite Likelihood Methods." *Statistica Sinica* 21 (1): 5–42.