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Giving context: defining where we are and what we did @

Object

¢ Handle clustered competing risks data (a kind of failure time data)
through the cumulative incidence function (CIF).

Goal

e Perform maximum likelihood estimation in terms of a full likelihood formulation
based on Cederkvist et al. (2019)’s CIF specification (Scheike’s).

Contribution

¢ The full likelihood formulation is in terms of a generalized linear mixed model (GLMM) -
a conditional approach (with fixed and random/latent effects);

¢ The optimization and inference are tacked down via an efficient model implementation
with the use of state-of-art computational libraries (Kristensen et al. (2016)’s TMB).
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@ Data
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Clustered competing risk data

Key ideas:

© Clustered: groups with a dependence @ Causes competing by something;

ALOCCR IR ©® Occurrence time of this something.

Something?

e QOccurrence or cure of a
disease or some biological
process;

¢ Failure of an industrial
or electronic component;

* Progress of a
patient clinic state.

Independent of the application, always the same framework
Cluster ID Cause1 Cause2 Censorship Time Feature

1 1 Yes No No 10 A
1 2 No No Yes 8 A
2 1 No No Yes 7 B
2 2 No Yes No 5 A
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® Model
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Modeling clustered competing risks data

What? How?
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Probability scale — Cause-specific CIF @
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i.e., CIF =P[failure time < t, a given cause | features & latent effects ].

Common applications: family studies.

L. Keywords: within-family/cluster dependence; age at disease onset; populations.
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Cederkvist et al. (2019)’s CIF specification

For two competing causes of failure,
the cause-specific CIFs are specified in the following manner

Fr(t]x, uy, Uz, nk) = Tix(X, Uy, Up) X Dweg(t) — Xy —mkl, t>0, k=1,2, (1)

cluster-specific cluster-specific
risk level failure time trajectory

with
© 7 (x,u) =exp{xBx + uk}/ (1 + Z,,K;} exp{xBm + um}> , k=1,2  K=3;
® O(.) is the cumulative distribution function of a standard Gaussian distribution;

® g(t) =arctanh(2t/5—1), te(0,6), g(t) € (—oo, o).

S2n Cederkvist et al. (2019), this CIF specification is modeled under a pairwise
composite likelihood approach (Lindsay 1988; Varin, Reid, and Firth 2011).
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Our contribution: a full likelihood analysis

For two competing causes of failure, a subject /, in the cluster j, in time t, we have

Yiit [ {tj, Uz, m1j, M2} ~ Multinomial(pyjit, Pait, Psijt)

latent effects

U 0] [o%, cov(uy,up) cov(up,my) cov(u,m2)
Uz| _Multivariate | |0 0%,  cov(up,mi) cov(up,ny)
n Normal 0|’ o5, cov(ny, n2)
N2 0 02,

0
Prijt = aFk(f | X, u,m)
_ exp{XkjiBk + Ukj}
1+ Y 52} exXp{XmjBim + Uy}
5 t—5/2
X ka [0) <Wkarctanh (6/2) — Xk Yk —ﬂkj> , k=1,2.
(2)

9/19




Marginal likelihood function for two competing causes

:g

L(6;y) = Jw ni(y; | ) x m(r;) dr;

[ {11 T ((EEum 1) ).

i1 11 Yiit! Yeii! yaijt! e

1

~.
Il

I
:::j <

j=1

fixed effect component

(27[)_2|Z|_1/2exp{ ;Tz }dr,

latent effect component

J N ’
=11 J {H HHPiZ’i'} (2m)2z] 1/"’exp{ ST r,}dr,, 3)

j=1 =1 t=1 k=1

fixed effect latent effect component

with pg;¢ from Equation 2 and where 8 = [3 v w o? p]T is the parameters vector.
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© TMB: Template Model Builder
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TMB: Template Model Builder

§ Kristensen et al. (2016).

An R (R Core Team 2021) package for the quickly implementation of complex
random effect models through simple C++ templates.

Key features:

@ Automatic differentiation;
The state-of-art in derivatives computation

@ Laplace approximation.
An efficient fashion to approximate the latent effect integrals
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O Simulation study
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Simulation study results

First of all, the time.

¢ In the most expensive scenarios (30K 4D Laplaces),

the complete model takes 30 min.
In a full R implementation with 10K 4D Laplaces, it took 30hrs. TMB is fast.

e We also did a Bayesian analysis via Stan/NUTS-HMC (Stan Development Team 2020).

¢ 1 week of parallelized processing for a 2500 size 2 clusters scenario with tuned NUTS.
This just reinforces the MCMC impracticability for some complex models.

Parameters estimation.

e The non-complete models fail to learn the data.
They appear to be not structured enough to capture the data characteristics.
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Simulation study results: High CIF scenario
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Simulation study results: Low CIF scenario
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Thanks for watching and have a great day @

= For more read Laureano (2021) master thesis.
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