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What we read (long description)
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Now in a shorter way
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What we read (short description)

At chapter 4 are discussed three of the most widely-used classifiers.

» Logistic Regression
» Linear Discriminant Analysis (LDA)
» Quadratic Discriminant Analysis (QDA)

What we didn’t read

More computer-intensive methods are discussed in later chapters,
such as

» Generalized Additive Models (GAM)
» Trees
» Random Forests
» Boosting
» Support Vector Machines (SVM)
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Why Not Linear Regression?
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Why Not Linear Regression?

We could consider encoding the response, Y , as a quantitative variable, e.g.,

Predict the medical condition of a patient on the basis of her symptoms.

Y =


1 if stroke;
2 if drug overdose;
3 if epileptic seizure.

Unfortunately, this coding implies an ordering on the outcomes.

Each possible coding would produce a fundamentally different linear model
that would ultimately lead to different sets of predictions.
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Why Not Linear Regression?

This leads us to other questions,

» What if the response variable values did take on a natural ordering,
such as mild, moderate, and severe?

» For a binary (two level) qualitative response, the situation is better.
» However, if we use linear regression, some of our estimates might be

outside the [0, 1] interval.
» However, the dummy variable approach cannot be easily extended to

accommodate qualitative responses with more than two levels.

For these reasons, it is preferable to use a classification method that is truly
suited for qualitative response values, such as the ones presented next.

Curiously,
it turns out that the classifications that we get if we use linear regression to
predict a binary response will be the same as for the linear discriminant
analysis (LDA) procedure we discuss later.
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A typical dataset

On the Agenda

1 Why Not Linear Regression?
2 A typical dataset
3 Logistic Regression

The model framework

Estimating the Regression
Coefficients

4 Linear Discriminant Analysis
(LDA)

To start. . . why do we need
something different?

LDA in a nutshell

Living in a simple and normal
world

Now, with more than one
predictor

Some important details

5 Quadratic Discriminant Analysis
(QDA)

6 Main remarks

leg.ufpr.br/~henrique Classification: ISL book chapter 8 / 33



A typical dataset

A classic ‘book example dataset relationship’

. . . a very pronounced relationship between balance and default.
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Logistic Regression
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Logistic Regression

To start, a comparison with Linear Regression

leg.ufpr.br/~henrique Classification: ISL book chapter 11 / 33



Logistic Regression

Logistic regression in two slides
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Logistic Regression The model framework

Some math, but with just one predictor

The model and its relations

p(X ) = eβ0+β1X

1 + eβ0+β1X︸ ︷︷ ︸
logistic
function

(S-shaped)

⇒ p(X )
1− p(X )︸ ︷︷ ︸

odds ∈ (0,∞)

= eβ0+β1X ⇒ log p(X )
1− p(X )︸ ︷︷ ︸

log-odds
or

logit

= β0+β1X

For example,

p(X ) = 0.2 ⇒ 0.2
1− 0.2 = 1

4 and p(X ) = 0.9 ⇒ 0.9
1− 0.9 = 9.
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Logistic Regression Estimating the Regression Coefficients

Maximum likelihood

The estimates β̂0 and β̂1 are chosen to maximize a math equation called a

likelihood function

l(β0, β1) =
∏

i :yi =1
p(xi)

∏
i ′:yi′ =0

(1− p(xi ′)).

The coefficients β̂0 and β̂1 are unknown, and must be estimated. The
general method of maximum likelihood is preferred, since it has better
statistical properties.

Maximum likelihood is a very general approach that is used to fit many of
the non-linear models examined throughout the book. In the linear
regression setting, the least squares approach is in fact a special case of
maximum likelihood.
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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA) To start. . . why do we need something different?

Different ideas, sometimes the same results
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Linear Discriminant Analysis (LDA) To start. . . why do we need something different?

Different ideas,

With LDA we model the distribution of the predictors X separately in
each of the response classes (i.e. given Y ), and then use Bayes’
theorem to flip these around into estimates for P[Y = k|X = x ].

Sometimes the same results

When these distributions are assumed to be normal, it turns out that
the model is very similar in form to logistic regression.
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Linear Discriminant Analysis (LDA) To start. . . why do we need something different?

But, ok... why not continue with logistic regression?
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Linear Discriminant Analysis (LDA) To start. . . why do we need something different?

But, ok. . . why not continue with logistic regression?

Simple, LDA is popular when we have more than two response classes.

Now, a reason more serious: stability

» When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable. LDA does not suffer
from this problem.

» If n is small and the distribution of the predictors X is approximately
normal in each of the classes, the linear discriminant model is again
more stable than the logistic regression model.
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Linear Discriminant Analysis (LDA) LDA in a nutshell

Model framework

» πk is the overall or prior prob. that a chosen obs. comes from k.
» In general, estimating πk is easy if we have a sample of Y s: we simply

compute the fraction of observations that belong to the kth class.
However, estimating fk(x) tends to be more challenging, unless we
assume some simple forms for these densities.

Remember from Chap. 2 that the Bayes classifier has the lowest possible
error rate out of all classifiers.
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Linear Discriminant Analysis (LDA) Living in a simple and normal world

Dealing with just one predictor

Assumptions: fk(x) is normal with equal variance for the kth classes.

Putting a hat (simple average and a weighted average of the sample
variances for each class) in everything, the LDA approx. this Bayes classifier.
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Linear Discriminant Analysis (LDA) Living in a simple and normal world

Ok, nice! But. . . why the name linear discriminant analysis?

The word linear stems from the fact that the discriminant functions
δ̂k(x) are linear functions of x .

That is, the LDA decision rule depends on x only through a linear
combination of its elements.

LDA is trying to approximate the Bayes classifier, which has the lowest total
error rate out of all classifiers (if the Gaussian model is correct).
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Linear Discriminant Analysis (LDA) Now, with more than one predictor

Getting bigger

More than one predictor ⇒
Multivariate normal distribution,
with a class-specific mean vector
and a common covariance matrix

f (x) = 1
(2π)p/2|Σ|1/2 exp

{
− 1

2(x − µk)>Σ−1(x − µk)
}

⇒

δ̂k(x) = x>Σ̂−1µ̂k −
1
2 µ̂
>
k Σ̂−1µ̂k + log π̂k

leg.ufpr.br/~henrique Classification: ISL book chapter 23 / 33



Linear Discriminant Analysis (LDA) Now, with more than one predictor

Getting bigger

More than one predictor ⇒
Multivariate normal distribution,
with a class-specific mean vector
and a common covariance matrix

f (x) = 1
(2π)p/2|Σ|1/2 exp

{
− 1

2(x − µk)>Σ−1(x − µk)
}

⇒

δ̂k(x) = x>Σ̂−1µ̂k −
1
2 µ̂
>
k Σ̂−1µ̂k + log π̂k

leg.ufpr.br/~henrique Classification: ISL book chapter 23 / 33



Linear Discriminant Analysis (LDA) Now, with more than one predictor

An example
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Linear Discriminant Analysis (LDA) Some important details

Ok, and about what else do we need to talk? (1/2)
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Linear Discriminant Analysis (LDA) Some important details

Ok, and about what else do we need to talk? (2/2)
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Quadratic Discriminant Analysis (QDA)
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Quadratic Discriminant Analysis (QDA)

Unlike LDA, QDA assumes that each class has its own covariance matrix.
Under this assumption, the approximation of the Bayes classifier becomes

QLA : δ̂k(x) = −1
2(x − µ̂k)>Σ̂−1

k (x − µ̂k)− 1
2 log |Σ̂k |+ log π̂k .

x appears as a quadratic function, this is where QDA gets its name.
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Quadratic Discriminant Analysis (QDA)

Ok, but. . . in practice, what’s the difference?
Why does it matter whether or not we assume that the K classes share a
common covariance matrix?
The answer lies in the bias-variance trade-off.
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Quadratic Discriminant Analysis (QDA)

Concluding. . .

LDA tends to be a better bet than QDA if there are relatively few
observations and so reducing variance is crucial.

In contrast, QDA is recommended if the data set is very large, so that the
variance of the classifier is not a major concern, or if the assumption of a
common covariance matrix for the K classes is clearly untenable.
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Main remarks
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Main remarks

» The logistic regression and LDA methods are closely connected, since
both produce linear decision boundaries.

To make a nicer comparison, we may mencion the KNN.

» KNN is a completely non-parametric approach: no assumptions are
made about the shape of the decision boundary. Nevertheless, KNN
does not tell us which predictors are important.

» When the true decision boundaries are linear, the LDA and logistic
regression approaches will tend to perform well. When the boundaries
are moderately non-linear, QDA may give better results. Finally, for
much more complicated decision boundaries, a non-parametric
approach such as KNN can be superior. But the level of smoothness
for a non-parametric approach must be chosen carefully.
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Main remarks

and. . .

laureano@ufpr.br

leg.ufpr.br/~henrique Classification: ISL book chapter 33 / 33

mailto:laureano@ufpr.br

	Why Not Linear Regression?
	A typical dataset
	Logistic Regression
	The model framework
	Estimating the Regression Coefficients

	Linear Discriminant Analysis (LDA)
	To start… why do we need something different?
	LDA in a nutshell
	Living in a simple and world
	Now, with more than one predictor
	Some important details

	Quadratic Discriminant Analysis (QDA)
	Main remarks

