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Notation & preliminaries

» an underlying failure time T
that may be subject to (independent) censoring

» a vector of possibly time-dependent covariates,
X (t) = {x(u) : 0 ≤ u < t}

» when failure occurs, it may be of any one of
m distinct types or causes denoted by J ∈ {1, 2, . . . ,m}

As before, the overall rate or hazard function at time t is

λ[t;X (t)] = lim
h→0

h−1P[t ≤ T < t + h | T ≥ t,X (t)].

To model competing risks, we consider a type-specific or cause-specific
hazard function or process

λj [t;X (t)] = lim
h→0

h−1P[t ≤ T < t + h, J = j | T ≥ t,X (t)],

for j = 1, . . . ,m and t > 0.
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In words,

type-specific hazard function, λj [t;X(t)] represents the
instantaneous rate for failures of type j at time t given
X (t) and in the presence of all other failure types.

Without ties of the failure types,

λ[t;X (t)] =
m∑

j=1
λj [t;X (t)].

The overall survivor function is

F (t;X ) = P[T > t | X ] = exp
{
−
∫ t

0
λ(u;X )du

}
,

and the (sub)density function for the time to a type j failure is

fj(t : X ) = lim
h→0

h−1P[t ≤ T < t + h, J = j | X ]

= λj(t;X )F (t;X ), j = 1, . . . ,m.
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When the covariates are of the fixed or external type,

the likelihood on a sample subject to independent right censorship is written as
a product of the survivor functions for the censored data and the subdensities
for the observed failure times, i.e., the likelihood function can be written
entirely in terms of the type-specific hazard functions.

The cumulative incidence function for type j failures corresponding to the
external covariate is

F̄j(t;X ) = P[T ≤ t, J = j ;X ]

=
∫ t

0
fj(u;X )du, t > 0,

for j = 1, . . . ,m. Note that

pj = P[J = j] = lim
t→∞

F̄j(t;X ), j = 1, . . . ,m

and
∑m

j=1 pj = 1.
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Fj(t;X ) has no simple probability interpretation within the competing risks
model, at least not without introducing strong additional assumptions.

Example 8.1. Suppose that m = 2 and that the covariate is a treatment
indicator x = 0, 1.
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Likelihoods

Consider {ti , δi , ji ,Xi (ti )}ni=1.

If the censoring is independent, the likelihood (or partial likelihood) is
proportional to

L =
n∏

i=1

{λj i [ti ;Xi (ti )]}δi
m∏

j=1
exp

{
−
∫ ti

0
λj [u;Xi (u)]du

}
=

m∏
j=1

(
{λj [ti ;Xi (ti )]}δj i exp

{
−
∫ ∞

0

n∑
i=1

Yi (t)λj [t;Xi (t)]dt
})

.

Any of the methods of preceding chapters can be
used for inference about the λj [t;X (t)]’s.
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We can also generalize simple explanatory methods such as Kaplan-Meier
and Nelson-Aalen estimators to competing risks data.

Let t1 < t2 < · · · < tk denote the k distinct failure times for all failure
types combined. Then, the likelihood function can be written

L =
k∏

i=1

 m∏
j=1
{[Fj(t−i )− Fj(ti )]F (t−i )}dj i

Ci∏
l=1

[F (til )]cil

 .
Its nonparametric MLE places mass only at the observed failure times
1, . . . , k, so the partially maximized likelihood can be rewritten using
expressions for discrete models, to obtain

Multinomial likelihood : L̂ =
k∏

i=1

 m∏
j=1

λ
dj i
j i (1− λi )ni−di

 .
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Likelihoods

Maximization of the multinomial likelihood gives the MLE λ̂j i = dj i/ni .

The cumulative hazard function is then estimated by
Λ̂j(t) =

∑k
i=1 1(ti ≤ t)dj i/ni , t ≥ 0.

» This yields the Nelson-Aalen estimate of the total cumulative hazard
and the Kaplan-Meier estimate of the overall survivor function F (t).

The estimated cumulative incidence function is also discrete, and is given by

ˆ̄Fj(t) =
∑
{i |ti≤t}

dj in−1
i F̂ (t−i ), j = 1, . . . ,m.
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Likelihoods
Consider now a relative risk or Cox model for the
cause-specific hazard functions

λj [t;X (t)] = λ0j(t) exp{Z (t)>βj}, j = 1, . . . ,m.

The corresponding partial likelihood is

L(β) =
m∏

j=1

kj∏
i=1

exp{Zj i (tj i )>βj}∑
l∈R(tj i ) exp{Zl (tj i )>βj}

.

If applicable, a proportional risks model

λj [t;X (t)] = λ0(t) exp{γj + Z (t)>βj}, j = 1, . . . ,m,

would yield more efficient βj estimators, in which the
cause-specific hazards are assumed to be proportional
to each other (for uniqueness set γ1 = 0).

leg.ufpr.br/~henrique Missing “short-title” field! leg.ufpr.br/~henrique 10 / 27



Likelihoods
The partial likelihood of the proportional risk model can then be written

k∏
i=1

exp{γj i + Zi (ti )>βj i}∑m
j=1

∑n
l=1 Yl (ti ) exp{γj + Zl (ti )>βj}

.

As is the general relative risk model,
an adjustment is needed to handle tied failure times.

Although it would often be more restrictive than is desirable, the proportial
risk model has some attractive properties. For instance, the probability that
an individual with fixed covariate Z has failure type j is

P[J = j ;Z ] = exp{γj + Z>βj}∑m
h=1 exp{γh + Z>βh}

, j = 1, . . . ,m,

regardless of λ0(·).

The corresponding MLEs of the proportionality factors exp{γj},
subject to γ1 = 0, are exp{γ̂j} = kj/k1, j = 2, . . . ,m.
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Example 8.2, m = 3.
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Example 8.2, m = 3.

leg.ufpr.br/~henrique Missing “short-title” field! leg.ufpr.br/~henrique 13 / 27



Multiple Decrement Function
Idea: A joint distribution for the latent failure times, T̄1, . . . , T̄m.
The multiple decrement function or joint survivor function,

Q(t1, . . . , tm; x) = P[T̄1 > t1, . . . , T̄m > tm; x ].

» This model gives a complete specification of the probability laws for
the m variate failure time model.

» Thus, quantities introduced earlier can be expressed in terms of Q, such
as the overall survivor function

F (t; x) = P[T > t; x ] = Q(t, t, . . . , t; x),
and the type-specific hazard functions

λj(t; x) = lim
∆t→0

P[t ≤ Tj < t + ∆t | T ≥ t; x ]
∆t

= −∂ logQ(t1, . . . , tm; x)
∂tj

∣∣∣∣
t1=···=tm=t

,

j = 1, . . . ,m.
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Nonidentificability

Quantities that cannot be expressed as functions of the
type-specific hazard functions, are nonidentifiable, and
so, cannot be estimated without introducing additional
model assumptions.

e.g.,

» the marginal survivor functions are generally nonidentifiable.
» why?

We don’t know the dependence structure of the latent failure times.
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how 2 solve

Nonidentificability of the marginal survivor functions

» With a internal time-dependent covariate x̃j(t), that given other
variables in the model, are highly predictive of the rate of type j failures

» A test for no association between x̃j(t) and
the failure rate for type j ′ failures

Dependent censoring

» Insertion of a time-dependent covariate
» If the censoring mechanism were well explained by the

time-dependent covariate, the censoring scheme would become
independent.

Possible problem? Confounding.
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Counting Processes & Asymptotic Results
Under independent censoring and the other conditions that we already know,

P[dNj l (t) = 1 | Ft− ] = Yl (t)λj [t;Xl (t)]dt
for 0 < t and all l , j . It follows that

Mj l (t) = Nj l (t)−
∫ t

0
Yl (u)λj [u;Xl (u)]du, j = 1, . . . ,m, l = 1, . . . , n

are orthogonal martingales wrt the filtration Ft .
The score vector is expressed as a stochastic integral of a predictable
process wrt a martingale, where

Uj(t) =
∫ t

0

n∑
l=1

[Zl (u)− E(βj , u)]dNj l (u)

=
∫ t

0

n∑
l=1

[Zl (u)− E(βj , u)]dMj l (u), j = 1, . . . ,m,

t > 0 and E(βj , u) is the weighted average
of Zl (u) over the risk set as before.
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The score process U(t) is a martingale whose predictable variation process
can be seen to be a block diagonal matrix.

The asymptotic arguments and results of Chapter 5 apply directly here.

To finish the competing risks part,

» The Nelson-Aalen estimator for the jth failure type can be written as

Λ̂0j(t) =
∫ t

0

dNj·(u)∑n
l=1 Yl (u) exp{Zl (u)>β̂j}

.

» In the case of external (or fixed) covariates, estimators of the baseline
cumulative incidence functions can be obtained as

ˆ̄F0j(t) =
∫ t

0
exp

−
m∑

j′=1
Λ̂0j′(u)

 d Λ̂0j(u).
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Multistate Models
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Markov Processes

First, with no covariates

Let the Markov process A(t) be the state occupied at time t, t > 0.
The transtion rate or intensity from i at time t− to j at time t is given by
the memoryless process

dΛij(t) = P[A(t− + dt) = j | A(u), 0 ≤ u < t,A(t−) = i ]
= P[A(t− + dt) = j | A(t−) = i ].

It is convenient to define

dΛii (t) = −
∑
j 6=i

dΛij(t)

so that the row sums of the matrix

dΛ(t) = [dΛij(t)]q×q

are all 0.
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r -step transition probability matrix

Discrete case

P(r) =
r∏

k=1
Pk = P1P2 . . .Pr , r = 0, 1, . . . ,

=
r∏

k=1
[I + dΛ(ak)] =

r∏
k=1

(P[A(ak) = j | A(a−k ) = i ])q×q

= (pij
r )q×q = (P[A(ar ) = j | A(0) = i ])q×q.

Continuous case

P(t) = (Pij(t))q×q = (P[A(t) = j | A(0) = i ])q×q

= Pt
0[I + dΛ(u)] = lim

M∏
i=1

[I + Λ(ui )− Λ(ui−1)],

where the limit is taken as M →∞ and ∆ui = ui − ui−1 → 0.
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Transition probabilities in different scenarios

Failure time model: P̂00(t) is the Kaplan-Meier estimate
of the survivor function.

Competing risks model: P̂0j(t) = ˆ̄Fj(t), the estimates
of the jth cumulative incidence function.

Now, with time-dependent covariates, i.e.,

Continuous-time modulated Markov models

Intensity function,

λij l (t) = lim
h→0

h−1P[Al (t− + h) = j | A(t−) = i ,Xl (u), 0 < u < t].
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Continuous-time modulated Markov models

Parametric model

With P[dNij l (t) = 1 | Ft− ] = Yi l (t)λij l (t),
the full log-likelihood on data over the interval [0, τ ] is

log LM =
∑
i 6=j

{∫ τ

0

n∑
l=1

[log λij l (t; θ)dNij l (t)− Yi l (t)λij l (t; θ)dt]
}
.

Semiparametric relative risk model

With a contribution term to the partial likelihood given by

P[dNij l (t) = 1 | dNij·(t) = 1,Ft− ] = Yi l (t) exp{Zl (t)>βij}∑n
u=1 Yiu(t) exp{Zu(t)>βij}

.
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Continuous-time modulated Markov models

The log partial likelihood is then

∑
all i ,j

{∫ τ

0

n∑
l=1

Zl (t)>βijdNij l (t)− log
[ n∑

l=1
Yi l (t) exp{Zl (t)>βij}dNij·(t)

]}
.

The procedures that we already know, can be used for
estimation here. The asymptotics follows the general
results outlined in Chapter 5.
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The modulated Markov model uses time since on study
as the basic time variable. In some instances, however,
there may be a strong dependence on time since entry
to a state. Such dependencies can be accommodated
by considering

modulated semi-Markov models

key: time since the individual entered the stated occupied at time t−,
B(t) = inf[s | A(t − s) 6= A(t−)].

With covariates and under a parametric model,
the likelihood can be written as

log LSM =
∑
i 6=j

n∑
l=1

{∫ ∞
0

log λij l [Bl (t); θ]dNij l (t)− Yi l (t)λij l [Bl (t); θ]dt
}
.
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Modulated Semi-Markov Models

Now, under a relative risk model and partial likelihood analysis with

» ν = Bl (t) representing the current sojourn time;
» and with the idea of having the sth visit to state i .

The log partial likelihood can be written

log L =
n∑

l=1

∫ ∞
0

Zl (aij l + ν)>βijsdN∗ijsl (ν)

−
∫ ∞

0
log
{ n∑

u=1
Y ∗isu exp{Zu(aisu + ν)>βijs}

}
dN∗ijs(ν),

where aisl is the time at which individual l enters the
state i for the sth time.
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