Failure Time Models

Henrique Laureano <http://leg.ufpr.br/~henrique>

January 28, 2020

Failure Time Models, 2nd chapter of The Statistical Analysis of Failure Time Data Kalbfleisch and Prentice, 2002

Outline

- » Some continuous parametric failure time models
- » Regression models
	- » Exponential and Weibull
	- » Relative Risk or Cox Model
	- » Accelerated failure time model
- » Discrete failure time models

Some continuous parametric failure time models

Random variable: failure time, T *>* 0. Type: continuous.

Common failure time distributions for homogeneous populations:

Now, let's better understand how this works.

Generalized F

Advantage: it can adapt to a wide variety of distributional shapes.

Context

A location and scale model for $Y = \log T$ in which the error distribution is assumed to be that of the logarithm of an F variate on $2m_1$ and $2m_2$ degrees of freedom.

That is, $Y = \mu + \sigma W$, where

$$
f_W(w)=\frac{(m_1/m_2)^{m_1}e^{wm_1}(1+m_1e^w/m_2)^{-(m_1+m_2)}}{B(m_1,m_2)}.
$$

The resulting model for T is the generalized F distribution.

Shapes of the hazard functions

A door to another world

To be able to see these Generalized F special cases, the transformation $Y = \mu + \sigma W$ is necessary.

However, this open a door for another world: Extreme Value Theory.

In the Generalized Gamma case and special cases, W is an extreme value (minimum) distribution.

Extreme Value Theory

- $\mathsf{\scriptstyle\mathsf{I}\!\!\!\!\!\!\!\downarrow}$ Generalized extreme value (GEV) distribution
	- $\mathrel{\rule{0pt}{1.1ex}\hspace{0pt}\mathrel{\rule{0pt}{1.5ex}\hspace{0pt}}\mathrel{1}}$ Type I extreme value distribution: Gumbel family
	- $\mathrel{\rule{0pt}{1.5ex}\hspace{0pt}\mathrel{\rule{0pt}{1.5ex}}\mathrel{4}}$ Type II extreme value distribution: Fréchet family
	- $\mathrel{\rule{0pt}{1.1ex}\hspace{0pt}\mathrel{\rule{0pt}{1.5ex}\hspace{0pt}}\mathrel{1}}$ Type III extreme value distribution: Weibull family

Regression models

 $\mathrel{\rule{0pt}{\mathbf{\mathsf{b}}}}$ Exponential and Weibull

Goal: obtain a regression model by allowing the failure rate to be a function of the derived covariates Z.

The hazard at time t for an individual can be written as

$$
\lambda(t; x) = \text{hazard} \times c(Z^\top \beta),
$$

three forms have been used for c:

 $\mathbf{v} \cdot \mathbf{c}(s) = 1 + s$, corresponding to the failure rate; » $c(s) = (1 + s)^{-1}$, corresponding to the mean survival time; $\sqrt{c(s)} = \exp(s)$.

Accelerated failure time models

 $\mathrel{\rule{0pt}{\mathbf{\scriptstyle\mathsf{b}}}}$ general class of log-linear models

- $\mathrel{\rule{0pt}{0pt}\mathrel{\rule{0pt}{0.5pt}}\mathrel{\cup}}$ covariates act additively on Y , or multiplication on T
	- $\mathrel{\rule{0pt}{\mathrlap{\hspace{0.05em}\rule{0pt}{1.5ex}}}\mathord{\mathord{\hspace{0.05em}\rule{0.05em}{1.5}}}}$ log survival time, $\mathrel{\mathcal{Y}}=$ log $\mathrel{\mathcal{T}}$

More general model: Relative Risk or Cox Model.

Relative risk model

Cox, 1972

$$
\lambda(t; x) = \lambda_0(t) \exp(Z^\top \beta),
$$

where $\lambda_0(\cdot)$ is an arbitrary unspecified baseline hazard function for continuous T.

The conditional survivor function for T given Z is

$$
F(t;x) = F_0^{\exp(Z^\top \beta)}(t), \quad \text{where} \quad F_0(t) = \exp\left[-\int_0^t \lambda_0(u) \mathrm{d}u\right].
$$

Thus the survivor function of t for a covariate value, x , is obtained by raising the baseline survivor function $F_0(t)$ to a power.

Nice generalizations,

- » stratified Cox model;
- time-dependent Cox model: *relative* risk model.

Accelerated failure time model

Suppose $Y = \log T$ and consider the linear model

$$
Y = Z^{\top} \beta + W.
$$

Exponentiation gives $\mathcal{T} = \exp(\mathcal{Z}^\top \beta)$ S , where $S = \exp(\mathcal{W}) > 0$ has hazard function $\lambda_0(s)$, say, that is independent of β .

The hazard function for T can be written as

$$
\lambda(t; x) = \exp(-Z^{\top}\beta)\lambda_0[t \exp(-Z^{\top}\beta)].
$$

The effect of the covariate is multiplicative on t rather than on the hazard function.

Comparison of regression models

Figure 2.4 The baseline hazard function $\lambda_0(u)$ corresponding to $Z = 0$ is compared to the hazard for $Z = 1 (\beta = -\log 1.5)$ under a relative risk model and to $z = 1 (\beta = \log 1.5)$ under an accelerated failure time model.

note

Exponential and Weibull regression models can be considered as special cases of both models.

Discrete failure time models

Discrete failure time?

- » Grouping of continuous data due to imprecise measurement;
- » Time itself may be discrete
	- » e.g., when the response time represents the number of episodes that occur prior to a terminal event.

Discrete regression models?

- » Grouped relative risk model;
- Discrete and continuous relative risk model:
- » Discrete logistic model.

Discrete regression models

» Grouped relative risk model:

Discrete baseline cumulative hazard function : $\Lambda_0(t) = \sum \lambda_i,$ ai≤t

this model is the uniquely appropriate one for grouped data from the continuous relative risk model.

» Discrete and continuous relative risk model:

$$
d\Lambda(t;x)=\exp(Z^\top\beta) d\Lambda_0(t),
$$

which retains the multiplicative hazard relationship.

» Discrete logistic model:

$$
\frac{d\Lambda(t;x)}{1-d\Lambda(t;x)}=\frac{d\Lambda_0(t)}{1-d\Lambda_0(t)}\exp(Z^\top\beta),
$$

specifies a linear log odds model for the hazard probability at each potential failure time.

