Failure Time Models

Henrique Laureano http://leg.ufpr.br/~henrique

January 28, 2020

Failure Time Models, 2nd chapter of *The Statistical Analysis of Failure Time Data* Kalbfleisch and Prentice, 2002

Outline

- » Some continuous parametric failure time models
- » Regression models
 - » Exponential and Weibull
 - » Relative Risk or Cox Model
 - » Accelerated failure time model
- » Discrete failure time models

Some continuous parametric failure time models

Random variable: failure time, T > 0. Type: continuous.

Common failure time distributions for homogeneous populations:

Now, let's better understand how this works.

Generalized F

Advantage: it can adapt to a wide variety of distributional shapes.

Context

A location and scale model for $Y = \log T$ in which the error distribution is assumed to be that of the logarithm of an F variate on $2m_1$ and $2m_2$ degrees of freedom.

That is, $Y = \mu + \sigma W$, where

$$f_W(w) = \frac{(m_1/m_2)^{m_1} e^{wm_1} (1 + m_1 e^w/m_2)^{-(m_1+m_2)}}{B(m_1, m_2)}.$$

The resulting model for T is the generalized F distribution.

Shapes of the hazard functions

A door to another world

To be able to see these Generalized F special cases, the transformation $Y = \mu + \sigma W$ is necessary.

However, this open a door for another world: Extreme Value Theory.

In the Generalized Gamma case and special cases, W is an extreme value (minimum) distribution.

Extreme Value Theory

- \downarrow Generalized extreme value (GEV) distribution
 - 4 Type I extreme value distribution: Gumbel family
 - 4 Type II extreme value distribution: Fréchet family
 - 4 Type III extreme value distribution: Weibull family

Regression models

↓ Exponential and Weibull

Goal: obtain a regression model by allowing the failure rate to be a function of the derived covariates Z.

The hazard at time t for an individual can be written as

$$\lambda(t; x) = hazard \times c(Z^{\top}\beta),$$

three forms have been used for c:

» c(s) = 1 + s, corresponding to the failure rate; » $c(s) = (1 + s)^{-1}$, corresponding to the mean survival time; » $c(s) = \exp(s)$.

Exponential regression modelWeibull regression model
$$\lambda(t; x) = \lambda \exp(Z^{\top}\beta)$$
 $\lambda(t; x) = \gamma(\lambda t)^{\gamma-1} \exp(Z^{\top}\beta)$ $Y = -\log \lambda - Z^{\top}\beta + W$ $Y = -\log \lambda - Z^{\top}\sigma\beta + \gamma^{-1}W$ $W \sim$ Extreme Value dist. $W \sim$ Extreme Value dist.

Accelerated failure time models

 \downarrow covariates act additively on Y, or multiplication on T

 $\downarrow \text{ log survival time, } Y = \log T$

More general model: Relative Risk or Cox Model.

Relative risk model

Cox, 1972

$$\lambda(t; x) = \lambda_0(t) \exp(Z^\top \beta),$$

where $\lambda_0(\cdot)$ is an arbitrary unspecified baseline hazard function for continuous T.

The conditional survivor function for T given Z is

$$F(t;x) = F_0^{\exp(Z^{ op}eta)}(t), \quad ext{where} \quad F_0(t) = \exp\left[-\int_0^t \lambda_0(u) \mathrm{d}u
ight].$$

Thus the survivor function of t for a covariate value, x, is obtained by raising the baseline survivor function $F_0(t)$ to a power.

Nice generalizations, _

- » stratified Cox model;
- » time-dependent Cox model: *relative* risk model.

Accelerated failure time model

Suppose $Y = \log T$ and consider the linear model

$$Y = Z^{\top}\beta + W.$$

Exponentiation gives $T = \exp(Z^{\top}\beta) S$, where $S = \exp(W) > 0$ has hazard function $\lambda_0(s)$, say, that is independent of β .

The hazard function for T can be written as

$$\lambda(t; x) = \exp(-Z^{\top}\beta)\lambda_0[t\exp(-Z^{\top}\beta)].$$

The effect of the covariate is multiplicative on t rather than on the hazard function.

Comparison of regression models

Figure 2.4 The baseline hazard function $\lambda_0(u)$ corresponding to Z = 0 is compared to the hazard for Z = 1 ($\beta = -\log 1.5$) under a relative risk model and to z = 1 ($\beta = \log 1.5$) under an accelerated failure time model.

note

Exponential and Weibull regression models can be considered as special cases of both models.

Discrete failure time models

Discrete failure time?

- » Grouping of continuous data due to imprecise measurement;
- » Time itself may be discrete
 - » e.g., when the response time represents the number of episodes that occur prior to a terminal event.

Discrete regression models?

- » Grouped relative risk model;
- » Discrete and continuous relative risk model;
- » Discrete logistic model.

Discrete regression models

» Grouped relative risk model:

Discrete baseline cumulative hazard function : $\Lambda_0(t) = \sum_{a_i \leq t} \lambda_i$,

this model is the uniquely appropriate one for grouped data from the continuous relative risk model.

» Discrete and continuous relative risk model:

$$d\Lambda(t; x) = \exp(Z^{\top}\beta) \ d\Lambda_0(t),$$

which retains the multiplicative hazard relationship.

» Discrete logistic model:

$$\frac{\mathrm{d}\Lambda(t;x)}{1-\mathrm{d}\Lambda(t;x)} = \frac{\mathrm{d}\Lambda_0(t)}{1-\mathrm{d}\Lambda_0(t)}\exp(Z^\top\beta),$$

specifies a linear log odds model for the hazard probability at each potential failure time.

