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Introduction

1 Likelihood function with exponential family form�

MLE through weighted least squares
• variance (assumed) constant: we minimize a sum of squared residuals;

• variance not constant:
estimating equations can be thought as a generalization of the scoring method.

2 Likelihood function without exponential family form�
In some cases: weighted least squares�

Jorgensen, B. (1983). Maximum likelihood estimation and large sample
inference for generalized linear and non-linear
regression models. Biometrika 70

Paper purposes

1 Maximize the likelihood function through weighted least squares�

In which class of problems;
2 Weighted least squares under 2nd moment assumptions (quasi-likelihood).
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A class of likelihood functions

Log likelihood written in the form : σ−2{y>θ − b(θ) − c(y,σ)}

The first two cumulants
By differentiating it and assuming that the support does not depend on θ�

E(Y) = µ = b ′(θ) and Cov(Y) = σ2b ′′(θ) = σ2V(µ).

In fact, the r th order cumulants of Y are given by κr = σ
2r−2b(r)(θ).

1 The first two cumulants describe the random component of the model;

2 However, in applications it is usually the systematic or nonrandom variation that is of
primary importance�

E(Y) = µ = µ(β) or E{(h(Y))} = ψ(β) (implicitly involving σ2).
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A class of likelihood functions

If σ2 is known, log-likelihood is an exponential family

�

variance and all higher order cumulants of Y are
functions of the mean vector alone

�

exponential, Poisson, multinomial, noncentral hypergeometric
and partial likelihoods (survival analysis)

�

MLE of β through weighted least squares�

µ and σ2 are orthogonal�

β and σ2 also orthogonal;

If σ2 is unknown, log-likelihood is not generally an exponential family�

However, MLE of β still through weighted least squares�

If E(Y) does not involve σ2.
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A class of likelihood functions

Least square equations

D>V−{y − µ(β̂)} = 0, for the parameters in E(Y) = µ(β)

• D = dµ/dβ, N × p; • V− is a generalized inverse of V.

Why its name?

1 Geometrical interpretation: projections of the residual vector y −µ(β̂0)
on to the tangent space of the solution locus µ(β);

2 These equations do not depend on σ2.

Newton-Raphson method

We replace the second derivative matrix by its expected value, D>V−D

β̂1 − β̂0 = (D>V−D)−1D>V−(y − µ̂0).
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Quasi-likelihood functions

Reversing the natural order of assumptions

1 Instead of taking the log-likelihood to be of the exponential family form and then
deriving its moments;

2 We begin with the moments and then attempt to reconstruct the log-likelihood.

The reconstituted function is called a quasi-likelihood.

The log-quasi-likelihood, function of µ,
is given by the system of partial differential equations

∂`(µ; y)
∂µ

= V−(µ)(y − µ).

Which extends Wedderburn’s (1974) definition.

1 We get β̂ from D>V−{y − µ(β̂)} = 0 (generalized least squares equations);

2 There is no guarantee that β̂ is the MLE.
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Properties of quasi-likelihood functions
Very similar to those of ordinary likelihoods except that the nuisance parameter,
σ2, when unknown, is treated separately from β and is not estimated by weighted
least squares.

The principal results fall into three classes:

1 Those concerning the score function Uβ = ∂`/∂β;

Uβ = D>V−(Y − µ(β)) has zero mean and covariance matrix σ2iβ = σ2D>V−D

where iβ is the expected second derivative matrix of `(µ(β); Y).

2 Those concerning the estimator β̂;

There exists a β̂ satisfying β̂ − β = I−1
β∗Uβ (minimum asymptotic variance)

where Iβ is the observed matrix of second derivatives
and β∗ is a point lying on the line segment joining β̂ and β.

12 / 19



Properties of quasi-likelihood functions

3 Those concerning the distribution of the quasi-likelihood-ratio statistic.

2`(β̂; Y) − 2`(β; Y) = U>β i−1
β Uβ + Op(N−1/2) is asymptotically σ2χ2

p

The asymptotic optimality follows the same line
as the optimal property of Gauss-Markov estimators.

The conclusions (asymptotic unbiasedness),

• while they apply more widely than the Gauss-Markov theorem,
are inevitably a little weaker being asymptotic rather than exact.
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Estimation of σ2

In the absense of information beyond the second moments:

σ̃2 =
(y − µ̂)>V−(y − µ̂)

N − p
=

X 2

N − p

where X 2 is a generalized form of Pearson’s statistic.

If the log-likelihood is in the exponential family,
an estimate can be obtained by equating the observed deviance

d(y; µ̂) = 2`(y; y) − 2`(µ̂; y), to its approximate expected value.

Advantage: asymptotically independent of β̂;

Disadvantage: the expectation of d(Y; µ̂) is often difficult to compute.
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Examples of quasi-likelihood functions

Least squares. V(µ) = V;

Uncorrelated observations. V(µ) = diag{v(µ1), v(µ2), . . . , v(µN)};

Invariance under linear transformations.

YL = LY, µL = Lµ, VL = LVL>,

with L being a nonsingular matrix of order N.

• Weaker than the corresponding result for log-likelihoods which are
invariant under all invertible transformations;

Multinomial response models. Logistic regression, e.g.;

Models with constant coefficient of variation.

Over-dispersion. Quasi-likelihood for over-dispersed discrete observations.
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A higher order theory

• Basically, there are problems if the exponential family is curved,
conditioning on ancillary statistics.
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