Comparing Unconstrained Optimization Methods

Henrique Ap. Laureano
ID 158811

KAUST

Spring Semester
2018

In this problem, we will solve the linear least squares (LLS) problem below:

X" = argmin || Ax — b |3
The matrix A and vector b are saved in Ab.mat provided with the homework. In what
follows, you will implement your own version of the different unconstrained optimization
methods we talked about in class. Submit all your code.

Here I’'m doing everything in R.

<r code> === === === === === === === === === ===
path <- "7 /Dropbox/KAUST/numerical_optimization/hw3/" # files path

library(R.matlab) # loading library to read the datasets
reading A, the function import as a list class
data_a <- readMat(pasteO(path, "data_a.mat"))

a <- matrix(unlist(data_a), le4, 1e3) # converting to a matrix
data_b <- readMat(pasteO(path, "data_b.mat")) # reading b
b <- matrix(unlist(data_b), le4, 1) # converting to a matrix
</r code> === === === ==== === === ==== === === === §#

()

Use the stationarity equation to compute x*. What is || Ax* — b [|s? Based on this result,
isbeR(A)?

Solution:

f(x) =] Ax—b |3 = (Ax —b) " (Ax — b)
=x ATAx—2x"ATb+b'b
vf(x)=2ATAx - 2A"b

vfx)=0 = 2ATAx=2A"b
x* = (ATAx)"'A'b

<r code> === == = == == = == == = == $#
x.ast < solve(t(a) %*% a) %% t(a) %% b # computing \mathbf{x}"{\ast}
norm(a %*}% x.ast - b, type = "2") # computing the L2 norm

</r code> == == =

[1] 31.66644

Is b € R(A)? No, because || Ax* — b ||o= 31.66 > 0.

(b)

Implement steepest descent with exact line search and apply it to the LLS problem above.
Initialize at xo = 0 and stop your descent loop at iteration & when || x*—x, [|o<|| x* ||2 ¥107C.
Plot the evolution of the objective value (in log scale) and plot || x* — xj, ||2 with increasing
k. Discuss your findings.

Solution:

Steepest descent iteration k + 1 with exact line search:

et = xp — I 7 i
* V2ATA Y fi

Y J;

- T - : : _ Ve
with 2A " A being the Hessian of f(x) and with the step length ay = m.

<r code> === == —— == == —— == == —— ==

steep.desc_els <- function(x, a, b) { # steepest descent with exact line search
x_k = matrix(rep(0, length(x))) # initializing at \mathbf{x}_{0} = \mathbf{O0}
i=1 # setting iterations counter
defining stop criterium

while (norm(x - x_k[, i], type = "2") > 1e-6 * norm(x, type = "2")) {
grad = 2 * t(a) %x% (a %*% x_k[, 1] - b) # computing gradient

alpha = (t(grad) 7%x*), grad) / (2 * t(grad) %*% t(a) %*% a %*)% grad) # \alpha

x_k = cbind(x_k, x_k[, i] - as.numeric(alpha) * grad) # putting together
i=1i+1 # addying new iteration
ieturn(xks = x_k[, -11) # returning the \mathbf{x}_{k}'s of each iteration
iks <- steep.desc_els(x.ast, a, b) # running the function
iter <- ncol(xks) # number of iterations

empty object to keep the objective value of each iteration
obj.value <- numeric(iter)
computing the objective value of each iteration
for (i in 1:iter) obj.valuel[i] = norm(a %x% xks[, i] - b, type = "2")**2

norms <- numeric(iter) # empty object to keep the L2 norm value of each iteration
computing the L2 norm of each iteration

for(i in 1:iter) norms[i] = norm(x.ast - xks[, i], type = "2")
par(mfrow = c(1, 2), mar = c(4, 4, 3, 2) + .1) # graphical definitions
plot(obj.value, log = "y", type = "b"

, xlab = "Iteration", ylab = "Objective value (in log scale)", main = "(a)")

plot(norms, type = "b", xlab = "Iteration", ylab = "L2 norm", main = "(b)")
</r Code> == == == == == == == == =

I
In
E=3

(@) (b)

@ o -J°)
8 o 0
7] &
g <] < -
5 K E o
< | S]]
S © \ c
‘g 3 (e} S AN — O\
e 1\
Q o 7] o 4
8 F 0000000000000000 o - ©000000000000000
o | | | | | | |
5 10 15 20 5 10 15 20
Iteration Iteration

Figure 1: Steepest descent with exact line search. (a): The objective value (in log scale) with
increasing k; (b): || x* — xy, || with increasing k.

We see that the objective value and || x* — xj, ||2 decrease quickly as k increase.

<r code> === == = == == = == == = ==

obj.value[iter] # final objective value
norms [iter] # final norm
</r Code> = = = = = = = = = ==

[1] 1002.763
[1] 1.248952e-05

(c)

Implement steepest descent with backtracking. Use the same initialization and stopping cri-
terion as in (b). Plot the evolution of the objective value (in log scale) and plot || x* — xj [|2
with increasing k. Compare these results to those of (b) and discuss.

Solution:

Steepest descent iteration k + 1:

Xpt1 = X — ak%, with the step length a4 gave by the backtracking line search.

Algorithm 3.1 (Backtracking Line Search).
Choose@ > 0,p € (0,1),c € (0,1); Setax < &;
repeat until f(x; +apr) < f(xx) + caV £l px

o < po;
end (repeat)
Terminate with o, = «.

<r code> == = = = = = = = = ==
steep.desc_back <- function (x, a, b) { # steepest descent with backtracking
x_k = matrix(rep(0, length(x))) # initializing at \mathbf{x}_{0} = \mathbf{0}
i=1 # setting iterations counter
fn <- function(x, a, b) { # function to compute:
obj = norm(a %*% x - b, type = "2")*x2 # object value
grad = 2 * t(a) %*% (a %*% x - b) # gradient
return(list(obj = obj, grad = grad))
} # function to compute the search direction (steepest descent)
steep <- function(fn) with(fn, - grad / norm(grad, type = "2"))
alpha = 1 # initializing at \alpha = 1

setting \rho and the constant as 0.7 (to be used in the backtracking)

rho = const = .7
empthy object to keep the object values at each iteration
obj.value = numeric(1)

empthy object to count how many times the algorithm
count = numeric(1) # enters in the backtracking at each iteration
norms = numeric(1) # empthy object to keep the norms at each iteration

computing the object value and the gradient for the first time
fn_k = fn(x_k[, i], a, b)
direc = steep(fn_k) # computing the search direction
initializing while loop with the stopping criterion
while (norm(x - x_k[, i], type = "2") > 1le-6 * norm(x, type = "2")) {
while (fn(x_k[, i] + alpha * direc, a, b)$obj > # initializing backtracking
fn_k$obj + const * alpha * t(fn_k$grad) %’ direc) {
counting how many times we do the backtracking at each iteration
count[i] = count[i] + 1
alpha = rho * alpha # updating \alpha (doing the backtracking)

}
x_k = cbind(x_k, x_k[, i] + alpha * direc) # computing the new \mathbf{x| {k}
i

=1i+1 # updating iteration counter
fn_k = fn(x_k[, i], a, b) # computing new object value and gradient
obj.value[i] = fn_k$obj # keeping the new object value
norms [i] = norm(x - x_k[, i], type = "2") # computing and keeping the norm
direc = steep(fn_k) # computing the new search direction
count[i] = 0 # setting the count to zero for the new iteration

}
returning the \mathbf{x}_{k}'s, object values, norms and backtracking counts
return(list(x = x_k[, -1], obj.value = obj.value[-1], norms = norms[-1]
, count = count))
} # running the steepest descent with backtracking
xks <- steep.desc_back(x.ast, a, b)

tail (xks$obj.value, 1) # final objective value
tail (xks$norms, 1) # final norm
xks$count # number of times that we do backtracking at each iteration
</r code> = =

[1] 1002.763
[1] 1.474028e-05
[1J] 0O0000000000000000111223212223122320

Comparing with (b) - steepest descent with exact line search, we have the same final
results (values). However, with steepest descent with backtracking we see more iterations
with the values decreasing more slowly.

<r code> == =

par (mfrow = c(1, 2), mar = c(4, 4, 3, 2) + .1) # graphical definitions

plot(xks$obj.value, log = "y", type = "b" # plotting the object values (log scale)
, xlab = "Iteration", ylab = "Objective value (in log scale)", main = "(a)")

plotting norms with increasing iterations k
plot(xks$norms, type = "b", xlab = "Iteration", ylab = "L2 norm", main = "(b)")
</r code> = =

(@) (b)

le+06
I
15
I
o
o
Ne

-
Q
<
(]
0
<4 h % %5
L o)
o
c o
= g — O g Si 7] OO
GjJ F — (@] [o
T 5 > <
> © - %
e o o - 5
= _ . o
5 o X
9 :
o)
@]

1e+03
l
go
0
l

0O 5 10 20 30 0O 5 10 20 30
Iteration Iteration

Figure 2: Steepest descent with backtracking. (a): The objective value (in log scale) with
increasing k; (b): || x* — xj, |2 with increasing k.

O

(d)

Implement BFGS using backtracking. Use the same initialization and stopping criterion as
in (b). Plot the evolution of the objective value (in log scale) and plot || x* — x; || with
increasing k. Compare these results to (c) and discuss.

Solution:

Algorithm 6.1 (BFGS Method).
Given starting point x,, convergence tolerance € > 0,
inverse Hessian approximation Hy;
k < 0
while |V fi|| > €;
Compute search direction

pr = —HV fi; (6.18)

Set xx+1 = Xi + ok pr where o is computed from a line search
procedure to satisfy the Wolfe conditions (3.6);
Deﬁne Sk = Xk+1 — Xk and Yk = ka+l — ka;
Compute Hy4+) by means of (6.17);
k —k+1;
end (while)

) 1
with Hy1 = (I— prseyl)Hi(I— prysi) + prsesy, and py, defined by py, = TS
k Ok

Here the stopping criterion is different (see problem statement) and the step length «y is
gave by the backtracking line search.

Algorithm 3.1 (Backtracking Line Search).
Choose@ > 0,0 €(0,1),c € (0,1); Setax « a;
repeat until f(xx +api) < f(x) + caV fil pi

o <~ po;
end (repeat)
Terminate with o, = «.

<r code> == = = = = = = = = ==

bfgs_back <- function (x, a, b) { # BFGS using backtracking
h = solve(2 * t(a) %*) a) # inverse of the hessian
obj <- function(x, a, b) norm(a %*), x — b, type = "2")*x*2 # object value
grad <- function(x, a, b) 2 * t(a) %*% (a %*% x - b) # gradient
id = diag(l, nrow = nrow(x)) # identity matrix
x_k = matrix(rep(0, length(x))) # initializing at \mathbf{x}_{0} = \mathbf{0}
i=1 # setting iterations counter
alpha = 1 # initializing at \alpha = 1
setting \rho and the constant as 0.7 (to be used in the backtracking)

rho = const = .7
obj.value = obj(x_k, a, b) # computing the object value for the first time
empthy object to count how many times the algorithm
count = numeric(1) # enters in the backtracking at each iteration
p_k = -h 7*J grad(x_k, a, b) # computing search direction
norms = numeric(1) # empthy object to keep the norms at each iteration

initializing while loop with the stopping criterion
while (norm(x - x_k[, i], type = "2") > 1le-6 * norm(x, type = "2")) {
while (obj(x_k[, i] + alpha * p_k, a, b) > # initializing backtracking
obj.value[i] + const * alpha * t(grad(x_k[, il, a, b)) %x*% p_k) {
counting how many times we do the backtracking at each iteration
count[i] = count[i] + 1
alpha = rho * alpha # updating \alpha (doing the backtracking)

}
x_k = cbind(x_k, x_k[, i] + alpha * p_k) # computing the new \mathbf{x} {k}
i=1+1 # updating iteration counter
computing the difference between \mathbf{x}_{k+1} and \mathbf{x}_{k}
s = x_ k[, i] - x_k[, i-1]
computing the difference between gradients
y = grad(x_k[, i], a, b) - grad(x_k[, i-1], a, b)

rhok = as.numeric(1/(t(y) %*% s)) # computing \rho_{k}
h = (id - rhok * s 7*) t(y)) 7%*) h 7*J (id - rhok * y Ux*) t(s)) +
rhok * s %*% t(s) # computing \mathbf{H}_{k+1}

}

p_k = -h U*} grad(x_k[, i], a, b) # computing new search direction
obj.valuel[i] = obj(x_k[, i]l, a, b) # computing and keeping new object value
norms [i] = norm(x - x_k[, i], type = "2") # computing and keeping the norm
count[i] = O # setting the count to zero for the new iteration

returning the \mathbf{x}_{k}'s, object values, norms and backtracking counts

return(list(x = x_k[, -1], obj.value = obj.value[-1], norms = norms[-1]
, count = count))

} ; xks <- bfgs_back(x.ast, a, b) # running the BFGS with backtracking
tail (xks$obj.value, 1) # final objective value
tail (xks$norms, 1) # final norm
xks$count # number of times that we do backtracking at each iteration
</r code> == = = == = = == = = ==
[1] 1002.763

[1] 1.298771e-05

[1] 2000000000000000000000

<r code> == = = = = = = = = == $#
par(mfrow = c(1, 2), mar = c(4, 4, 3, 2) + .1) # graphical definitions
plot(xks$obj.value, log = "y", type = "b" # plotting the object values (log scale)

plot(xks$norms, type = "b", xlab = "Iteration", ylab = "L2 norm", main = "(b)")
</r Code> == = = == = = == = = ==

Objective value (in log scale)

, xlab = "Iteration", ylab = "Objective value (in log scale)", main = "(a)")
plotting norms with increasing iterations k

#

() (b)

O
Q _
@ o o
\ o
8 O
2 |\ o
g 41 o £
\ 2 o
-3 5 T
o \ 5
— — (@] N \
\ o
8 oo %o
F - 00000000000000 o - 000000000000000
o | | | | | | | |
5 10 15 20 5 10 15 20
Iteration Iteration

Figure 3: BFGS with backtracking. (a): The objective value (in log scale) with increasing k;

(b):

| x* — xx, || with increasing k.

Comparing with (c) - steepest descent with backtracking, we have the same final results
(values). However, with BFGS with backtraking we see less iterations, 1/3 less, with the
values decreasing more faster.

O

(e)

Implement Newton’s method with exact line search. Use the same initialization and stopping
criterion as in (b). What do you notice?

Solution:

Newton’s method iteration & + 1 with exact line search:

p; (A (Ax; — b))

Xjpp1 = X — pTA™ Apy pr, with py=—(ATA) (247 (Ax;, — b))
<r code> === = = == = = == = = ==
newton_els <- function(x, a, b) { # newton's method with exact line search
x_k = matrix(rep(0, length(x))) # initializing at \mathbf{x}_{0} = \mathbf{0}
i=1 # setting iterations counter
h_inv = solve(t(a) %*% a) # inverse of the hessian

initializing while loop with the stopping criterion
while (norm(x - x_k[, i], type = "2") > 1e-6 * norm(x, type = "2")) {
computing search direction

p_k = - h_inv %x% (2 * t(a) %*) (a %*% x_k[, i1 - b))
alpha = - (t(p_k) %*) (t(a) %+ (a %*% x_k[, il - b))) /
(t(p_k) 7*% t(a) %*% a %*) p_k) # computing step length \alpha_{k}

computing the new \mathbf{x}_{k}

x_k = cbind(x_k, x_k[, i] + as.numeric(alpha) * p_k)

i=1+1 # updating iteration counter
}
return(xks = x_k[, -1]1) # returning the \mathbf{x}_{k}'s

}

xks <- newton_els(x.ast, a, b) # running the newtons method with exact line search

norm(a %*}% xks - b, type = "2")*x2 # computing objective value
norm(x.ast - xks, type = "2") # computing norm
</r code> == = = == = = == = = ==

[1] 1002.763
[1] 2.587757e-13

Newton’s method for optimization converges in one step if the function is quadratic, as
here. So here we have convergence in one interation. In (b) - steepest descent we have
convergence after more than 20 iterations.

OJ

(f)

Implement the original and economic linear CG methods. Use the same initialization and
stopping criterion as in (b). Compare the performance of both methods w.r.t. the number
of iterations needed to converge and the total time needed to converge. You can use the
MATLAB commands tic and toc to measure the overall runtime.

Solution:
Original CG (Conjugate Gradient) method:

Algorithm 5.1 (CG-Preliminary Version).

Given x;
Setrg <= Axg — b, po < —rp, k < 0;
while r;, # 0
T
Ty Pk
oy —ﬁ—p; (5.14a)
Pi APk
Xgl < Xk + Qg pis (5.14b)
Tit1 < Axgy — b (5.14¢)
T
Tiy1 APk
Byt < ———; (5.14d)
Pr APk
P41 < —Tig1 + Brr1 i (5.14e)
k —k+1; (5.14f)
end (while)
<r code> === == === == == === == == === ==
cg_orig <- function (x, a, b) { # original cg - conjugate gradient method
x_k = matrix(rep(0, length(x))) # initializing at \mathbf{x}_{0} = \mathbf{0}
r k=2 % t(a) %% (a %*%h x_k - b) # gradient = residual of the linear system
p_k = -r_k # initial search direction
i=1 # setting iterations counter
obj.value = norm(a %*), x_k - b, type = "2")*x2 # object value
norms = numeric(1) # empthy object to keep the norms at each iteration
tl = Sys.time() # initial time

initializing while loop with the stopping criterion
while (norm(x - x_k[, i], type = "2") > le-6 * norm(x, type = "2")) {
step length using exact line search
alpha = - (t(r_k) %*k p_k) / (2 * t(p_k) %*% t(a) %*% a %*% p_k)
computing the new \mathbf{x}_{k}
x_k = cbind(x_k, x_k[, i] + as.numeric(alpha) * p_k)

10

i=1+1 # updating iteration counter
rk =2 *x t(a) %% (a %*% x_k[, 1] - b) # new residual
computing the constant \beta_{k}

beta_k = (t(r_k) 7*) t(a) %x*% a %*% p_k) / (t(p_k) %x% t(a) %*) a %*) p_k)
p_k = -r_k + as.numeric(beta_k) * p_k # new search direction
computing and keeping new object value

obj.value[i] = norm(a %% x_k[, 1] - b, type = "2")**2
norms[i] = norm(x - x_k[, i], type = "2") # computing and keeping the norm
}
returning the \mathbf{x}_{k}'s, object values and total time needed to converge
return(list(x = x_k[, -1], obj.value = obj.value[-1], norms = norms[-1]
, time = Sys.time() - t1))

} # running the original cg - conjugate gradient method
xks_cg.orig <- cg_orig(x.ast, a, b)

</I‘ Code> = = = = = = = = = ==
<r code> === == = == = = == = = ==

par(mfrow = c(1, 2), mar = c(4, 4, 3, 2) + .1) # graphical definitions
plotting the object values (log scale)

||y|| , type = Hbll
"Objective value (in log scale)", main = "(a)")

plot(xks_cg.orig$obj.value, log
, xlab = "Iteration", ylab

plotting norms with increasing iterations k
plot(xks_cg.orig$norms
, type = "b", xlab = "Iteration", ylab = "L2 norm", main = "(b)")
</r code> = == = = == = = == =

1]
]
=+

() (b)

—~~

<@ I_O_O o)

S 3 0

o F

g <] <

c =

S 1 o S v
<t o

s Q =

= — N
(] N —

z - | - o)

S

> o \

= — -

(&)

8 o o,

S - C ocoo0o000000 o — 00000000
< I e A I B e

2 4 6 8 10 12 2 4 6 8 10 12

Iteration Iteration

Figure 4: Original CG - conjugate gradient method. (a): The objective value (in log scale)
with increasing k; (b): || x* — X, |2 with increasing k.

11

Economic Linear CG (Conjugate Gradient) method:

Algorithm 5.2 (CG).

Given xg;
Setry < Axg — b, pg < —rg, k < 0;
while r, # 0
T
r,r
A < Tf(—k; (5.24a)
P APk
X1 < Xk + O Pis (5.24b)
Tky1 < Ik + Q Apy; (5.24¢)
rg;lrk+1
P <~ —F— (5.24d)
Pk+1 < —Trp1 + Bry1Pis (5.24e)
k<~ k+1; (5.24f)
end (while)
<r code> == = = = = = = =
cg_eco <- function (x, a, b) { # economic linear cg - conjugate gradient method

x_k = matrix(rep(0, length(x))) # initializing at \mathbf{x}_{0} = \mathbf{0}
matrix to keep the residuals of two different iterations
r_k = matrix(NA, ncol = 2, nrow = nrow(x))
gradient = residual of the linear system
r k[, 11 = 2 * t(a) %*% (a %*)% x_k - b)

p_k = -r_k[, 1] # initial search direction
i=1 # setting iterations counter
obj.value = norm(a %*% x_k - b, type = "2")*x*2 # object value
norms = numeric(1) # empthy object to keep the norms at each iteration
tl = Sys.time() # initial time

initializing while loop with the stopping criterion
while (norm(x - x_k[, i], type = "2") > 1e-6 * norm(x, type = "2")) {
step length using exact line search
heavy = t(a) %x% a %*% p_k
alpha (t(r_kl[, 11) 7% r_k[, 11) / (2 * t(p_k) %*% heavy)
computing the new \mathbf{x}_{k}
k = cbind(x_k, x_k[, i] + as.numeric(alpha) * p_k)

=1i+1 # updating iteration counter
new residual

X_
i

r_ k[, 2] = r k[, 1] + as.numeric(alpha) * 2 * heavy

computing the constant \beta_{k}
beta_k = (t(r_k[, 21) %*% r k[, 21) / (e(x_k[, 11) 7*% r_k[, 11)

12

p_k = -r_k[, 2] + as.numeric(beta_k) * p_k # new search direction
computing and keeping new object value

obj.value[i] = norm(a %*% x_k[, i] - b, type = "2")**2
norms[i] = norm(x - x_k[, i], type = "2") # computing and keeping the norm
r k[, 1] = r_k[, 2] # setting the new residual as the old residual

}
returning the \mathbf{x}_{k}'s, object values and total time needed to converge
return(list(x = x_k[, -1], obj.value = obj.value[-1], norms = norms[-1]
, time = Sys.time() - t1))

} # running the economic linear cg - conjugate gradient method
xks_cg.eco <- cg_eco(x.ast, a, b)
</r code> = == = = == = = == = == $#

<r code> === == = == == = == == = ==
par(mfrow = c(1, 2), mar = c(4, 4, 3, 2) + .1) # graphical definitions
plotting the object values (log scale)
plot(xks_cg.eco$obj.value, log = "y", type = "b"
, xlab = "Iteration", ylab = "Objective value (in log scale)", main = "(a)")
plotting norms with increasing iterations k

plot (xks_cg.eco$norms
, type = "b", xlab = "Iteration", ylab = "L2 norm", main = "(b)")
</r code> = = = = = = = = =

Il
]
H

(a) (b)

—
Q m_O o
8 3 0
) $ —
2 <] < -
= &
<t o
g Q <
o — Y]
(D) o —
z - | - o)
= o) \\
° 7
o} 52 = \ O
'8 + — oOOOOOOOO o oOOOOOOOO
o T T T T I I B N
2 4 6 8 10 12 2 4 6 8 10 12

Iteration Iteration

Figure 5: Economic Linear CG - conjugate gradient method. (a): The objective value (in
log scale) with increasing k; (b): || x* — X, ||z with increasing k.

13

Comparing:

<r code> === == = == == = == == = ==

original cg - conjugate gradient method
tail(xks_cg.orig$obj.value, 1) # final objective value
tail(xks_cg.orig$norms, 1) # final norm
xks_cg.orig$time # total time needed to converge
</r code> == = = == = = == = = ==

[1] 1002.763
[1] 1.576835e-05
Time difference of 4.048472 secs

<r code> == == = = == = = == = ==

economic linear cg - conjugate gradient method
tail(xks_cg.eco$obj.value, 1) # final objective value
tail(xks_cg.eco$norms, 1) # final norm
xks_cg.eco$time # total time needed to converge
</r code> == = = == = = == = = ==

[1] 1002.763
[1] 1.576835e-05
Time difference of 1.492002 mins

Both methods reach the same values with the same number of iterations, 12. However,
the original CG method need 4 seconds to converge, while the economic linear CG method

need 1.49 minutes.
[|

14

