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(a)

Solve Problem 3.1 on page 63 of Chapter 3 in textbook T1. MATLAB is preferred here.
Show all your work, and submit your code. Choose your own and c. Plot the objective value
with increasing iteration number. Use whichever stopping criterion you see fit.

Problem 3.1 Program the steepest descent and Newton algorithms using the backtracking
line search, Algorithm 3.1. Use them to minimize the Rosenbrock function (2.22). Set
the initial step length ay = 1 and print the step length used by each method at each
iteration. First try the initial point zy = (1.2,1.2) " and then the more difficult starting

point zg = (—1.2,1)".

Algorithm 3.1 (Backtracking Line Search).
Choosea@ > 0, p € (0,1),c € (0, 1); Setax < @;
repeat until f(x; +apy) < f(xx) + caV £l pi

o < po;
end (repeat)

Terminate with o, = a.
Rosenbrock function :  f(z) = 100(zy — 27)* + (1 — x1)*. (2.22)

Solution:

exer3.1 <- function (x0, method) {
rosen <- function(x) {
fn = 100 * (x[2] - x[1]**2)**2 + (1 - x[1])*x2

grad = matrix(
c( x[1] = (400 * x[1]**2 - 400 * x[2] + 2) - 2, 200 * (x[2] - x[1]1*x%2) ) )

hess = matrix(



}

#

#

c( 1200 * x[1]**2 - 400 * x[2] + 2, -400 * x[1], -400 * x[1], 200 ), 2, 2
, byrow = TRUE)

return(list(fn = fn, grad = grad, hess = hess)) # returning vectors/objects
}
direc <- function(obj, type) { # descent directions
switch(type,
steep = with(obj, - grad / norm(grad, type = "2")), # steepest descent
newton = with(obj, - solve(hess, grad)) # newton
)}
X = matrix(x0) # converting the initial points to a 2 x 1 matrix
ite = 100 # number of iterations
alpha = numeric(ite) # creating vector to keep the \alpha values
alpha[1] = 1 # setting the first \alpha to 1
rho = const = .5 # setting \rho and c to 0.5
fn = numeric(ite) # storing the rosenbrock function value at each iteration
count = numeric(ite) # storing the number of iterations in the backtracking
rb = rosen(x) # doing the rosenbrock function computations for the initial x
p = direc(rb, method) # computing the descent direction for the initial x
for (1 in 1:ite) { # doing the loop

while (rosen(x + alphali] * p)$fn > # computing the backtracking line search
rb$fn + const * alphalil * t(rb$grad) %+’ p) {

count [i] count [i] + 1 # counting the number of times at each iteration

alpha[i] = rho * alphali] # updating the\ alpha

}

X = x + alpha[i] * p # updating x with the (new) x and the descent direction

rb = rosen(x) # doing rosenbrock function computations for the new x
fn[i] = rb$fn # storing the rosenbrock function value in the iteration
p = direc(rb, method) # computing the descent direction for the new x

# keeping the new \alpha to use again in the backtracking line search
alpha[i + 1] = alphalil
# returning the final x vector, the rosenbrock function value at each
# iteration, the number of iterations at each backtracking iteration,
} # and the \alpha values at each iteration
return(list(x = x, fn = fn, count = count, alpha = alphal[-ite+1]))

</r code> #

<r code> #
# running the function in different scenarios (initial points and methods)

easy.steep <- exer3.1(x0 = c(1.2, 1.2), method = "steep")
easy.newton <- exer3.1(x0 = c(1.2, 1.2), method = "newton")
hard.steep <- exer3.1(x0 = c(-1.2, 1), method = "steep")
hard.newton <- exer3.1(x0 = c(-1.2, 1), method = "newton")
# </r code> ============================== ==== #




# <r code> === == = == == = == == = == #
# plotting the results
graph <- function(y, label, type, point) {

title = switch(type
, alpha.steep = paste0(
"Steep length by Steepest descent\ninitial point "
, point)
, alpha.newton = paste0(
"Steep length by Newton algorithm\ninitial point "
, point)
, fn.steep = paste0(
"Objective value by Steepest descent\ninitial point "
, point)
, fn.newton = paste0(
"Objective value by Newton algorithm\ninitial point "
, point)
)
lattice: :xyplot(y ~ 1:length(y), col =1, type = "1", lwd = 3
, scales = list(x = list(at = c(1, seq(10 , length(y), 10))))
, xlab "Iterations", ylab = label
, main = title)

}

print(graph(easy.steep$alpha, expression(alpha), "alpha.steep", "(1.2, 1.2)")
, position = c(0, .75, .5, 1), more = TRUE)

print (graph(easy.newton$alpha, expression(alpha), "alpha.newton", "(1.2, 1.2)")
, position = c(0, .5, .5, .75), more = TRUE)

print(graph(hard.steep$alpha, expression(alpha), "alpha.steep", "(-1.2, 1)" )
, position = c(0, .25, .5, .5), more = TRUE)

print (graph(hard.newton$alpha, expression(alpha), "alpha.newton", "(-1.2, 1)" )

, position = c(O, 0, .5, .25), more = TRUE)

print(graph(easy.steep$fn, "f(x)", "fn.steep", "(1.2, 1.2)")

, position = c(.5, .75, 1, 1), more = TRUE)

print(graph(easy.newton$fn, "f(x)", "fn.newton", "(1.2, 1.2)")
, position = c(.5, .5, 1, .75), more = TRUE)

print (graph(hard.steep$fn, "f(x)", "fn.steep", "(-1.2, 1)" )
, position = c(.5, .25, 1, .5), more = TRUE)

print(graph(hard.newton$fn, "f(x)", "fn.newton", "(-1.2, 1)" )

, position

= c(.5, 0, 1, .25))

# </r code> ==




Steep length by Steepest descent
initial point (1.2, 1.2)

0.06
0.04
o]
0.02 |
0.00 |
T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Iterations
Steep length by Newton algorithm
initial point (1.2, 1.2)
| | | | | | | | | | |
1.0
0.8
0.6 -
o]
0.4
0.2
0.0
T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Iterations
Steep length by Steepest descent
initial point (-1.2, 1)
| | | | | | | | | | |
0.12
0.10
0.08
S 0.06
0.04
0.02
0.00 —
T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Iterations
Steep length by Newton algorithm
initial point (-1.2, 1)
| | | | | | | | | | |
1.0
0.8 -
o) 0.6
0.4
0.2 -

T T T T T T T T T
1 10 20 30 40 50 60 70 80

Iterations

Figure 1: Steph length (at left) and objective value (at right) by each method at each (of

T T
90 100

f(x)

f(x)

f(x)

f(x)

Objective value by Steepest descent
initial point (1.2, 1.2)

0.6 -
0.4 -
0.2
0.0
T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Iterations

Objective value by Newton algorithm
initial point (1.2, 1.2)

0.04
0.03
0.02
0.01
0.00
T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Iterations
Objective value by Steepest descent
initial point (-1.2, 1)
| | | | | | | | | | |
6.0 -
5.5
5.0 —
45
4.0
35 -
T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100
Iterations

Objective value by Newton algorithm
initial point (-1.2, 1)

Iterations

100) iteration(s), for an ’easy’ and a more difficult starting point.

4



(b)

CVX is a MATLAB-based modeling system that supports disciplined convex programming.
CVX is used to formulate and solve convex optimization problems. In this problem, we will
employ this software to solve some data fitting problems. You can download the standard
CVX package here. Provide your code for each of the subproblems below and print out the

CVX solution you get.

CVXR Here I'm using CVXR (https://cran.r-project.org/web/packages/CVXR/index.html,
https://cvxr.rbind.io/), a R version of CVX.

# <r Code> === == = == == = == == = == #
library(CVXR) # laoding the library
# </r code> == == == == == == == == == == #
Let A and b be defined as follows:
3 2 1 10
A=|-1 3 2[; b=15
1 -1 1 —1
# <r code> === == = == == = == == = == #
A <- matrix(c( 3, 2, 1, # creating the matrix A
_1, 3: 2,
1, -1, -1), 3, 3, byrow = TRUE)

# creating the vector b

b <- matrix(c(10, 5, -1), 3, 1)
# </r code> == —= _

== #

i.

ly data fitting: Prove that problem P1 is convex. Use CVX to

[Hint: Use norm to solve P1].

P1:

Solution:

solve P1 given A and b.

min || Ax — b |2
X

Proof: || - || is a convex function and Ax — b is affine. Therefore, P1 is convex.

# <r code>

X <- Variable(3)

obj <- p_norm(A %*) x - b, 2)
prob  <- Problem(Minimize(obj))
result <- solve(prob)
result[-c(8:9)]

# creating x

# computing P1

# following the package procedure
# solving

# showing results

# </r code> == ==




$status
[1] "optimal"

$value
[1] -1.548944e-11

$-2°
[,1]

$solver
[1] "EcCOS"

$solve_time
[1] 5.2036e-05

$setup_time
[1] 4.8653e-05

$num_iters

[1]1 5
X:
result [3]
$°2

[,1]
[1,] 2
[2,] 1
[3,] 2
ii.

Problem P1 can be equivalently formulated as P2. Prove that P2 is also convex and all its
global solutions are the same as those of P1. Generate the equivalent quadratic form and
use quad_form in CVX to solve it.

P2: min| Ay —b |3
y

Solution:

ming(y) =|| Ay —b 13 = min g(y) = y'ATAy —2(A"b) y+ || b |3
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Proof The matrix A is full rank, so the Hessian V2g(y) = 2ATA is positive definite.

Therefore, g(y) is convex. f(x) =|| Ax — b |5 is convex, then g(y) = f(x)

2 is also

convex and the global optimum x* satisfies V f(x*) = Vg(x*). The global solution is
obtained when Vg(y) =0,y = (ATA) 1A Tb. Therefore, the solutions to P1 and P2

are identical.

# <r code> === == ===
y <- Variable(3)

obj <- quad_form(y, t(A) 7x% A) - 2 * t(t(h)
<- Problem(Minimize(obj))

prob
result <- solve(prob)
result[-c(8:9)]

# creating y
# computing P2

7*% b) Y%*% y + p_norm(b, 2)*x*2
# following the package procedure
# solving
# showing results

# </r code> == — I

=== #

$status
[1] "optimal"

$value
[1] -7.58099e-07

$-2°

[,1]
[1,] 2.000250
[2,] 1.000125
3,1 2.000250

$solver
[1] "ECOS"

$solve_time
[1] 5.9781e-05

$setup_time
[1] 4.4631e-05

$num_iters
[1] 11

y:

# <r code> === == ===

result[3]

=
H<S =

# </r code> == — S

$°2°
[,1]



[1,] 2.000250
[2,] 1.000125
[3,]1 2.000250

111.

ly data fitting with a mazimum value and l; reqularizers: Prove that P3 is convex, if A <0
and p < 0. Solve the problem using CVX with A = pu = 2.

P3: min | Az =b [l +p [zl +A [l 2]

Solution:

Proof || - ||; and || - ||« are both convex function and P3 is a nonnegative combination of
three convex functions. Therefore, P3 is convex.

# <r code> === == === == == === == == === == #
z <- Variable(3 # creating z
mu <- lambda <- 2 # setting values

# computing P3
obj <- p_norm(A %*% z - b, 1) + mu * p_norm(z, Inf) + lambda * p_norm(z, 1)
prob  <- Problem(Minimize (obj)) # following the package procedure
result <- solve(prob) # solving
result[-c(8:9)] # showing results
# </r code> == === === == === === == === === == #
$status

[1] "optimal"

$value
[1] 12.5
$-2°

1]

= e
O o1 O

$solver
[1] "ECOS"

$solve_time
[1] 5.9584e-05

$setup_time



[1] 4.655e-05

$num_iters
[11 7

# <r code> ==
result[3]
# </r code> =

$-2°
[,1]
[1,1 1.5
[2,] 1.5
1.0

N



