JAGS

An analysis of the union wages data: GLM's, GAM's and JAGS

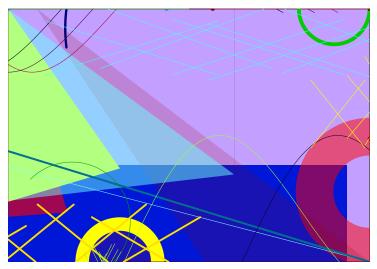
Henrique Laureano mynameislaure.github.io

STAT 260: Nonparametric Statistics

1

On the Agenda

Turning the dataset into a Kandinsky* painting



(github.com/gsimchoni/kandinsky)

* Kandinsky

Wassily Kandinsky

Painter

Wassily Wassilyevich Kandinsky was a Russian painter and art theorist. He is credited with painting one of the first recognised purely abstract works. Wikipedia

Born: December 16, 1866, Moscow, Russia Died: December 13, 1944, Neulih-sur-Seine, France On view: Museum of Modern Art, MORE Periods: Abstract art, Expressionism, Post-Impressionism, MORE Influenced by: Pablo Picasso, Vincent van Gogh, Henri Matisse, MORE Spouse: Nina Andreievskaya (m. 1917–1944), Anna Chimiakina (m. 1892–1911)

Quotes

Colour is a means of exerting direct influence on the soul.

The artist must train not only his eye but also his soul.

There is no must in art because art is free.

(screenshots from Google)

Henrique Laureano Project presentation (the project isn't done yet!)

Trade union data

Data on 534 U.S. workers with eleven variables (SemiPar::trade.union).

Trade union data

Data on 534 U.S. workers with eleven variables (SemiPar::trade.union).

Variables:

Trade union data

Data on 534 U.S. workers with eleven variables (SemiPar::trade.union).

Variables:

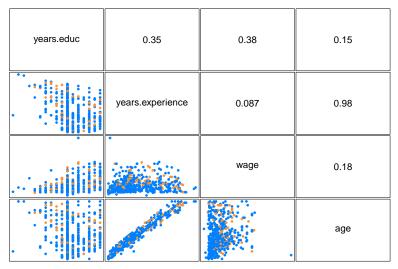
- union.member (yes or no)
- years.educ
- years.experience
- wage (dollars per hour)
- age
- female (yes or no)

- south (living or not in southern region of U.S.)
- race

(black, hispanic or white)

- occupation (six categories)
- sector (three categories)
- married (yes or no)

Quantitative variables:



(colors by union.member status)

On the Agenda

Fitting Generalized Linear Models

Fitting Generalized Linear Models

- Let *p_i* be the probability of trade union membership;
- Using a logistic regression model

$$logit(p_i) = \beta_0 + \beta_1 years.educ_i + ... + \beta_{10} married_i,$$

union.member_i ~ Bernoulli(p_i), $i = 1, ... 534$.

(b/c we have 10 variables, as previously shown)

Fitting Generalized Linear Models

- Let *p_i* be the probability of trade union membership;
- Using a logistic regression model

```
\begin{split} \text{logit}(p_i) &= \beta_0 + \beta_1 \text{years.educ}_i + \ldots + \beta_{10} \text{married}_i, \\ \text{union.member}_i &\sim \text{Bernoulli}(p_i), \quad i = 1, \ldots 534. \end{split}
```

(b/c we have 10 variables, as previously shown)

```
formula <- union.member ~
years.educ + years.experience + wage + age + female + south +
as.factor(race) + as.factor(occupation) + sector + married</pre>
```

union.glm <- glm(formula, family = binomial, trade.union)</pre>

Using the AIC as criterion we have

Henrique Laureano

union.glm\$formula

```
union.member ~ wage + age + female + south + as.factor(race) +
    as.factor(occupation) + married
```

we *finish* with seven variables, two quantitatives.

union.glm\$formula

```
union.member ~ wage + age + female + south + as.factor(race) +
    as.factor(occupation) + married
```

we *finish* with seven variables, two quantitatives.

... and the residues?

union.glm\$formula

```
union.member ~ wage + age + female + south + as.factor(race) +
as.factor(occupation) + married
```

we *finish* with seven variables, two quantitatives.

... and the residues? ... and the goodness-of-fit?

GAM

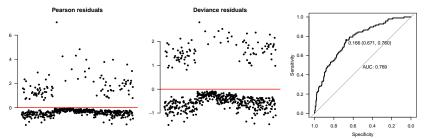
union.glm\$formula

```
union.member ~ wage + age + female + south + as.factor(race) +
    as.factor(occupation) + married
```

we finish with seven variables, two quantitatives.

... and the residues? ... and the goodness-of-fit?

pearson <- residuals(union.glm, type = "pearson")
devi <- residuals(union.glm, type = "deviance")
rocurve <- pROC::roc(trade.union\$union.member, fitted(union.glm))</pre>



Henrique Laureano

Coefficients

Coefficients

round(summary(union.glm)\$coeff, 5)

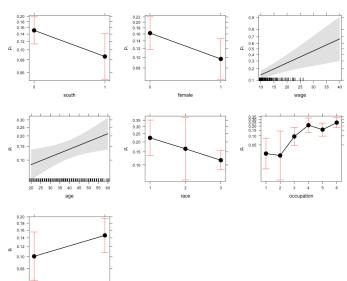
	Estimate	Std. Error	z value	Pr(z)
(Intercept)	-4.53060	0.90223	-5.02153	0.00000
wage	0.08442	0.02592	3.25714	0.00113
age	0.02597	0.01095	2.37229	0.01768
female	-0.59555	0.29111	-2.04579	0.04078
south	-0.63577	0.29703	-2.14043	0.03232
as.factor(race)2	-0.38396	0.62853	-0.61089	0.54127
as.factor(race)3	-0.78680	0.34220	-2.29922	0.02149
as.factor(occupation)2	-0.16020	1.20540	-0.13291	0.89427
as.factor(occupation)3	1.41211	0.76008	1.85784	0.06319
as.factor(occupation)4	2.34356	0.72099	3.25049	0.00115
as.factor(occupation)5	1.97851	0.66585	2.97139	0.00296
as.factor(occupation)6	2.56000	0.67209	3.80900	0.00014
married	0.42817	0.28264	1.51489	0.12980

null.deviance: 503.0841, deviance: 426.8709

Henrique Laureano

Effects

Effects



married

Henrique Laureano

Project presentation (the project isn't done yet!)

0

STAT 260, KAUST

On the Agenda

Fitting Generalized Additive Models

Fitting Generalized Additive Models

Logistic regression model

$$\begin{split} \text{logit}(p_i) &= \beta_0 + f_1(\text{years.educ}_i) + \ldots + f_4(\text{age}_i) \\ &+ \beta_1 \text{female}_i + \ldots + \beta_6 \text{married}_i, \\ \text{union.member}_i &\sim \text{Bernoulli}(p_i), \quad i = 1, \ldots 534. \end{split}$$

(4 quantitative variables, thus 4 smooth functions/splines, and 6, remaining, qualitative variables.)

Fitting Generalized Additive Models

Logistic regression model

$$\begin{split} \text{logit}(p_i) &= \beta_0 + f_1(\text{years.educ}_i) + \ldots + f_4(\text{age}_i) \\ &+ \beta_1 \text{female}_i + \ldots + \beta_6 \text{married}_i, \\ \text{union.member}_i &\sim \text{Bernoulli}(p_i), \quad i = 1, \ldots 534. \end{split}$$

(4 quantitative variables, thus 4 smooth functions/splines, and 6, remaining, qualitative variables.)

```
formula <- union.member ~
s(years.educ) + s(years.experience, k = 20) + s(wage, k = 20) +
s(age, k = 20) + female + south + race + occupation + sector +
married</pre>
```

union.gam <- mgcv::gam(formula, family = binomial, trade.union)</pre>

Henrique Laureano

Fitting Generalized Additive Models

Logistic regression model

$$\begin{split} \text{logit}(p_i) &= \beta_0 + f_1(\text{years.educ}_i) + \ldots + f_4(\text{age}_i) \\ &+ \beta_1 \texttt{female}_i + \ldots + \beta_6 \texttt{married}_i, \\ \text{union.member}_i &\sim \text{Bernoulli}(p_i), \quad i = 1, \ldots 534. \end{split}$$

(4 quantitative variables, thus 4 smooth functions/splines, and 6, remaining, qualitative variables.)

```
formula <- union.member ~
s(years.educ) + s(years.experience, k = 20) + s(wage, k = 20) +
s(age, k = 20) + female + south + race + occupation + sector +
married</pre>
```

union.gam <- mgcv::gam(formula, family = binomial, trade.union)</pre>

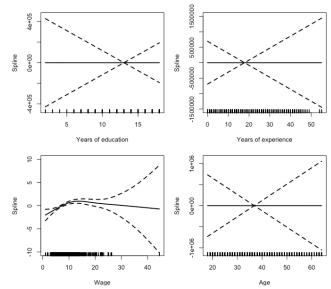
Selecting a model looking to trade off between degree of freedom and RSS

· · · Henrique Laureano

Doing variable selection in qualitative features and looking to the qualitative ones \ldots

JAGS

Doing variable selection in qualitative features and looking to the qualitative ones \ldots

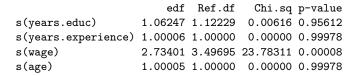


Henrique Laureano

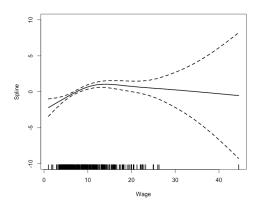
round(anova(union.gam)\$s.table, 5)

edfRef.dfChi.sqp-values(years.educ)1.062471.122290.006160.95612s(years.experience)1.000061.000000.000000.99978s(wage)2.734013.4969523.783110.00008s(age)1.000051.000000.000000.99978

round(anova(union.gam)\$s.table, 5)



Doing variable selection in the qualitative's...



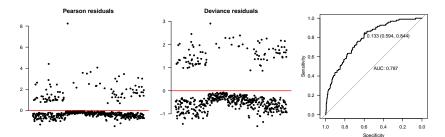
Henrique Laureano

Residues

union.gam\$formula

union.member ~ s(wage, k = 20) + female + south + as.factor(race) +
 as.factor(occupation)

pearson <- residuals(union.gam, type = "pearson")
devi <- residuals(union.gam, type = "deviance")
rocurve <- roc(trade.union\$union.member, fitted(union.gam))</pre>



Henrique Laureano

GAM

JAGS

Coefficients

round(summary(union.gam)\$p.table, 5)

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	-2.57646	0.68418	-3.76578	0.00017
female	-0.39142	0.29565	-1.32392	0.18553
south	-0.43371	0.30044	-1.44360	0.14885
as.factor(race)2	-0.01837	0.62644	-0.02932	0.97661
as.factor(race)3	-0.78659	0.34918	-2.25271	0.02428
as.factor(occupation)2	-0.22424	1.19651	-0.18741	0.85134
as.factor(occupation)3	1.08200	0.73580	1.47051	0.14142
as.factor(occupation)4	2.33738	0.69628	3.35695	0.00079
as.factor(occupation)5	1.73543	0.65435	2.65214	0.00800
as.factor(occupation)6	2.37213	0.64999	3.64951	0.00026

summary(union.gam)\$s.table

edf Ref.df Chi.sq p-value s(wage) 2.82771 3.641582 29.64349 5.95743e-06

Henrique Laureano

On the Agenda

Logistic regression model

 $logit(p_i) = f(wage_i)$, union.member_i ~ Bernoulli(p_i), i = 1, ..., 534.

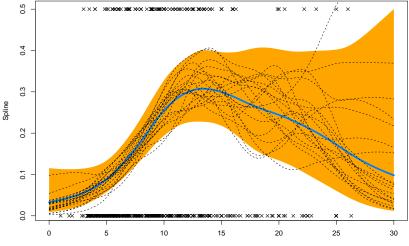
JAGS model specification file

```
model {
  eta <- X %*% b
  for (i in 1:n) { mu[i] <- ilogit(eta[i]) } # expected response</pre>
  for (i in 1:n) { y[i] ~ dbin(mu[i], w[i])
                                                        # response
  for (i in 1:1) { b[i] ~ dnorm(0, .018) } # tau=1/7.5**2
                                               # prior for s(wage)
  K1 <- S1[1:19, 1:19] * lambda[1] + S1[1:19, 20:38] * lambda[2]
  b[2:20] ~ dmnorm(zero[2:20] .K1)
                                      # smoothing parameter priors
  for (i in 1:2) {
    lambda[i] ~ dgamma(.05, .005)
    rho[i] <- log(lambda[i])</pre>
  }
}
```

JAGS

Results

Simulating from the model and addying a sample of 20 curves from the posterior.



Wage

STAT 260, KAUST

JAGS

and is this. . .

thank you!

henrique.laureano@kaust.edu.sa

Henrique Laureano

Project presentation (the project isn't done yet!)

STAT 260, KAUST