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Problem 1

Read section 5.3.1 in the textbook. Answer the questions for cubic regression spline
(5.3).

(a)

Show that the second derivative of the spline can be expressed as

k—2
f(x) =) didi(x)
i=2

where

(. —x-1)/hic1, i1 <x <,

di(z) = § (i1 — 2)/hi, 2 <@ < x4,

0, otherwise.

Solution:

The spline can be written as

Ti1 — X T — T Tin1 — ) hy — hi(Ti — x—x;)3/h; — hi(x — x;
f(x) = - Bi+ 5i+1+( + Y/ G >6i+( )/ ( )5¢+1,
hi hi 6 6
if ZT; <z S Lit1-
Differentiating we have,
13(x0q — )2 13(x —x;)? ,
f/(ZC) = 6 ( +hi ) 52 + 6 ( hl ) 52’4—17 if ZT; S X S Tijy1-
Differentiating again we have,
f(x) = I1+2—$5i+$;$16i+1’ if oz <wx<xig.
What can be re-written simply as
f—2 (x —xi—1)/hic1, w1 <x <y
f(z) = Z5¢di($) where  d;(z) = ¢ (w01 — ) /hi,  x; < < iy,
=2 0, otherwise.
O



(b)

Hence show that, in the notation of section 5.3.1,

/ f"(x)2dx =6~ "B
Solution:
(x —xiz1)/hic1, xio < <y,

k—2
5l+x ; x25i+1 = Zdzdz(x) where dz(ﬂf) = (.lelqu — :L')/hl, Z; S Xz S Lit1,
i i=2

0, otherwise.

Tl — T

h;

f/l (:E)

and the matrix B used to define the cubic regression spline

B, hithi
’ 3

Also hz = Tij41 — 4.

hi .
izl,...,k—Q, Bi7i+1: gl and Bi+1,i: 6 5 221,...,]{?—3.

We can re-written

[ rrapar =0 [ aw)Tass

with d(x) being a vector with i-th element d;;;(z) and with the first and last elements having
coeflicients zero.

Each d;(x) is non-zero over only 2 intervals, is easy to see that [ d(z)d(z)"dz is tri-diagonal and
symmetric. The ¢ — 1-th leading diagonal element is given by

Tit+1 Zi (:L‘ _ xifl)Q Tit1 (xi+1 _ 1.)2 (1. _ «Ti—l)g Ti (xiJrl _ x)S Tit+1
/xl = / T / T BT

Ti—1 ? Z;
_ (ifz - $¢—1)3 + (5U1'+1 - ifi)g
3h2, 3h2

h3 h3 hi1  hy
S, T2 T g g D 1T 2ok

i

Following the same reasoning the off-diagonal elements (i — 1,4) and (i,7 — 1) are given by

hicv hisa 6
In this way we see that [ d(z)d(z)"dz = B, and therefore,

o R hi— :
/ dz(x)dz,l(x)dx = / a e xdl’ = ! = Bifl,i and Bi,ifly 1 = 3, ey k—1.

/f”(.CE)QdI =0 "B,



(c)

Finally show that

/f”<l')2dl‘ — 6TDTB_1D5
Solution:
/f”(:z:)zda: =0 "Bs.
From Equation (5.4) we know that

Bé~=DB = 6 =B'Dp.
Then,

0 =(B'DB) =8 D (BT,
and therefore,
/f”(x)Qd:B =3"D"(BHY'BB'DB = /f”(g:)zd:v = 3"'D"BT'Dg.

Given the symmetry of B, (B™Y)'B = (B™1)"BT =1.

Problem 2

Read section 5.4.2 in the textbook. The natural parameterization is particularly
useful for understanding the way in which penalization causes bias in estimates, and
this question explores this issue.

(a)

Find an expression for the bias in a parameter estimator Bl” in the natural parameter-
ization (bias being defined as E{3/ — 3/}). What does this tell you about the bias in
components of the model which are unpenalized, or only very weakly penalized, and
in components for which the ‘true value’ of the corresponding parameter is zero or
nearly zero?

Solution:

We know that



E(B) = (XX + AS)' X E(y) = (X"X + AS)'X X3,

and that in the natural parametrization

E(/é”> _ (I + AD)_l,BH.
Then,

R A ' — (14+ ADy) 3" —B"A\Di;
bias(8)) = E{f] — B/} = o (1(4_—;1)..) P - (1i AD;;)

If 3" =0 or AD;; = 0, then the estimator is unbiased.

The bias will be small for small ‘true parameter value’ or weakly penalization. Just moderate or

strongly penalizations of substantial magnitude that are subject to substantial bias.
O

(b)

The mean square error in a parameter estimator (MSE) is defined as E{(§; — 3;)2}
(dropping the primes for notational convenience). Show that the MSE of the estima-
tor is in fact the estimator variance plus the square of the estimator bias.

Solution:

E{(6: — 8:)*} = B{(B: — E(B)) + E(B:) — 5:)*}
= V(B;) + bias(5;)? + 0
= V(B;) + bias(8:)*.

(c)

Find an expression for the mean square error of the i-th parameter of a smooth in
the natural parameterization.

Solution:

The variance expression is given in page 212.



Mean Square Error :

(d)

MSE = V(3;) + bias(8:)?

. o? (@‘ADu‘)Z
(14 ADy)? (14 ADy;)?
_0®+ (BiADy)?

(14 ADy)?

Show that the lowest achievable MSE, for any natural parameter, is bounded above
by o?, implying that penalization always has the potential to reduce the MSE of a
parameter if the right smoothing parameter value is chosen. Comment on the propor-
tion of the minimum achievable MSE that is contributed by the squared bias term,

for different magnitudes of parameter value.

Solution:

We can write

Minimizing in A we have

MSE 1+ (82/0%)A2D?
0'2 - (1 + )\D”)2

MSE/o? 2
az_A/a =0 = 20Z5DX(1+ADy)* =2(1+ > : ZiN2D2)Dyi(1 + ADy)
52 z 212
AZEDii(1 4 ADyg) = 14 S5 32D}
52 T Y 22
>\ 5 Dii + — A D + —5A°Dj;
o
2
)\6 D;=1
2
A = 0_2.
D;i 3;
Putting this A* in MSE we obtain
0'2 2 0'4
ap_ CHBEOPDE CHAREEDL ot E  THET 2f+ot g
-y (1+ ooz Di )2 ! (1 + %)2 (Bf;f)? g2 (B2 +0?)
2 0232
_ 2p2 | 2 5; _ B;
S T o



So the lowest achievable MSE is 0232/(3? + ¢%). Comparing with 0% we see that

2 92
BQUT@Z:U2 = ?BP=0*B+oY) = pF<p4o
1; O-

In the natural parameterization the unpenalized estimator variance and unpenalized MSE is 2.
o232 /(8% + 0?) is always smaller than o2

If A could be chosen to minimize the MSE for a given parameter, then from ¢23?/(3? + 0?) is clear
that small magnitude (;’s would lead to high penalization of MSE dominated by the bias term,

while large magnitude (;’s would lead to low penalization of MSE dominated by the variance.
O

Problem 3

Your R function for fitting a penalized regression spline (slides Topic 9 page 38)

# <r code> ==============================s=ssssssssssssssss=s=s=s=s=s==s===============
# data: it is often claimed, at least by people with little actual knowledge of

# engines, that a car engine with a larger cylinder capacity will wear out

# less quickly than a smaller capacity engine.

# the data were collected from 19 Volvo engines.

# reading the data and scaling the engine capacity data to lie in [0, 1]
size <- c(1.42, 1.58, 1.78, 1.99, 1.99,

1.99, 2.13, 2.13, 2.13, 2.32,

2.32, 2.32, 2.32, 2.32, 2.43,

2.43, 2.78, 2.98, 2.98)

wear <- c(4.0, 4.2, 2.5, 2.6, 2.8,
2.4, 3.2, 2.4, 2.6, 4.8,
2.9, 3.8, 3.0, 2.7, 3.1,
3.3, 3.0, 2.8, 1.7)

x <- size - min(size) ; x <- x / max(x)

par(mar = c(5, 4, 2, 2) + .1) # graphical definition
plot(x, wear, xlab = "Scaled engine size", ylab = "Wear index", pch = 16)
# </r COde> T L S T T T T T T #
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Figure 1: Data scatter plot.
# <r code> ========== B #
# stablishing basis function
rk <- function(x, z){ # R(x, z) for cubic spline on [0, 1]

((z - .B)*x2 - 1/12) * ((x - .B)**2 - 1/12) / 4 -
( (abs(x - z) - .B)*x4 - (abs(x - z) - .5)*x2 / 2 + 7 / 240 ) / 24}
# taking a sequence of knots and an array of x values to produce a design matrix X

# for the spline (setting up model matrix for cubic regression spline)
spl.X <- function(x, xk){ # x the data vector, x_{k} the knot vector
q = length(xk) # number of knots
p=9q+2 # number of parameters
n = length(x) # number of data
X = matrix(1, n, p) # initialized model matrix
X[, 2] = x # set second column to x
X[ , 3:p] = outer(x, xk, FUN = rk) # and remaining to R(x, x_{k})
X}
# setting up the penalized regression spline penalty matrix S,
# given knot sequence x_{k}
spl.S <- function(xk){
q = length(xk)
pP-9q+2
S = matrix(0, p, p) # initialize matrix to O
S[3:p, 3:p] = outer(xk, xk, FUN = rk) # fill in non-zero part
St

# fitting a penalized regression spline to x, y data,
# with knots x_{k}, given smoothing parameter, lambda



prs.fit <- function(y, x, xk, lambda){

X = spl.X(x, xk) # computing design matrix X
S = spl.S(xk) # computing penalty matrix S
inv = solve(t(X) %+ X + lambda * S) # computing inverse
beta = inv %*% t(X) U*% y # computing the \beta's
hat = X %«% inv %% t(X) # computing the hat matrix
hat.y = hat %*% y # computing \hat{Y}
return(list(coef = beta, fitted = hat.y))} # returning \beta's and \hat{Y}
prs <- prs.fit(y = wear, x = x, xk = 1:7 / 8, lambda = le-4) # fitting
par(mfrow = c(1, 2), mar = c(5, 4, 2, 2) + .1) # graphical definitions
plot(x, wear, xlab = "Scaled engine size", ylab = "Wear index", pch = 16)
lines(x, prs$fitted, lwd = 2, col = "#0080ff") # plotting \hat{Y}
plot(x, wear, xlab = "Scaled engine size", ylab = "Wear index", pch = 16)

# building a prediction matrix and plotting the fitted spline for this new data
lines(0:100/100, spl.X(0:100/100, 1:7 / 8) %x% prs$coef, lwd = 2, col = "#0080ff")

# </r code> =============== ==—————=—=—==—=—=—=———=—=—=—=——==—=—=—=—=——=——==—==—=—=—=—=—=—=== #
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Figure 2: Scatter plots with fitted splines in blue. In the left we have Y = A(N)Y, but the curve
is sharp, since we have only 19 data points. In the right we have the fitted spline for a grid of 100
points, as consequence the curve is much more smooth.

Here we used g = 7 knots, evenly spread over [0, 1], and a A = 0.0001 (best fit in slides Topic 9
page 39).
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