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Problem 1

This question is about illustrating the problems with polynomial bases. First run

# <r code> ===================================================================== #
set.seed(1) # setting the "seed" to have always the same data
x <- sort(runif(40)*10)**.5 # generating x
y <- sort(runif(40))**.1 # generating y
# </r code> ==================================================================== #

to simulate some apparently innocuous x, y data.

# <r code> ===================================================================== #
par(mar = c(4, 4, 2, 2) + .1) ; plot(x, y) # plotting ...
# </r code> ==================================================================== #
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Figure 1: Some apparently innocuous x, y data.

(a)

Fit 5th and 10th order polynomials to the simulated data using, e.g., lm(y ∼ poly(x,
5)).
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Solution:

# <r code> ===================================================================== #
poly5 <- lm(y ~ poly(x, 5)) ; poly10 <- lm(y ~ poly(x, 10))
# </r code> ==================================================================== #

�

(b)

Plot the x, y data, and overlay the fitted polynomials. (Use the predict function to
obtain predictions on a fine grid over the range of the x data: only predicting at the
data fails to illustrate the polynomial behavior adequately).

Solution:

# <r code> ===================================================================== #
grid <- seq(min(x), max(x), length = 200) # 5 times more points (40 * 5 = 200)
par(mar = c(4, 4, 2, 2) + .1) ; plot(x, y) # graphical definition & plotting data

# overlaying the 5th order fitted polynomial
lines(grid, predict(poly5, data.frame(x = grid)), col = 2, lwd = 2)

# overlaying the 10th order fitted polynomial
lines(grid, predict(poly10, data.frame(x = grid)), col = "#0080ff", lwd = 2)
# </r code> ==================================================================== #
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Figure 2: Data with overlay of the fitted polynomials (5th order in red and 10th order in blue).
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We see how the 10th order fitted polynomial chase the data and how he lost himself between
the initial points of x because we don’t have data in that interval.

�

(c)

One particularly simple basis for a cubic regression spline is b2(x) = x and bj+2(x) =|
x−x∗j |3 for j = 1, . . . , q−2, where q is the basis dimension, and the x∗j are knot locations.
Use this basis to fit a rank 11 cubic regression spline to the x, y data (using lm and
evenly spaced knots).

Solution:

# <r code> ===================================================================== #
rank <- 11 # rank of the cubic spline
x_j <- ( ( 1:(rank - 2) / (rank - 1) )*10 )**.5 # defining x_{j}
basis <- function(x, x_j) abs(x - x_j)**3 # defining simple basis

# constructing the formula for the basis of the cubic regression spline
fm <- paste0("basis(x, x_j[", 1:(rank - 2), "])", collapse = "+")
fm <- paste("y ~ x +", fm)
cs <- lm(formula(fm)) # fitting the model, cs: "c"ubic regression "s"pline
# </r code> ==================================================================== #

�

(d)

Overlay the predicted curve according to the spline model, onto the existing x, y plot,
and consider which basis you would rather use.

Solution:

# <r code> ===================================================================== #
par(mar = c(4, 4, 2, 2) + .1) ; plot(x, y) # graphical definition & plotting data

# overlaying the 5th order fitted polynomial
lines(grid, predict(poly5, data.frame(x = grid)), col = 2, lwd = 2)

# overlaying the 10th order fitted polynomial
lines(grid, predict(poly10, data.frame(x = grid)), col = "#0080ff", lwd = 2)

# overlaying the predicted cubic regression spline curve
lines(grid, predict(cs, data.frame(x = grid)), col = 3, lwd = 2)
# </r code> ==================================================================== #
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Figure 3: Data with overlay of the fitted polynomials (5th order in red and 10th order in blue)
and the predicted cubic regression spline curve, in green.

The results with the 5th order polynomial and with the rank 11 cubic spline are quite similar, but
with the cubic spline the fit looks more smooth.

�

Problem 2

Show that the β minimizing ‖ y −Xβ ‖2 +λβ>Sβ is given by β̂ = (X>X+ λS)−1X>y.

Solution:

‖ y −Xβ ‖2 +λβ>Sβ

(y −Xβ)>(y −Xβ) + λβ>Sβ

y>y − 2β>X>y + β>X>Xβ + λβ>Sβ

y>y − 2β>X>y + β>(X>X+ λS)β,

Taking the derivative with respect to β and setting to zero:
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−2X>y + 2(X>X+ λS)β̂ = 0

(X>X+ λS)β̂ = X>y

β̂ = (X>X+ λS)−1X>y.

�

Problem 3

Let X be an n× p model matrix, S a p× p penalty matrix, and B any matrix such that
B>B = S. If X̃ = [X>,B>]> is an augmented model matrix, show that the sum of the
first n elements on the leading diagonal of X̃(X̃>X̃)−1X̃> is tr{X(X>X+ S)−1X>}.

Solution:

X̃>X̃ = [X>B>]

[
X
B

]
= X>X+B>B = X>X+ S

X̃(X̃>X̃)−1X̃> =

[
X
B

]
(X>X+ S)−1[X>B>]

=

[
X(X>X+ S)−1X> X(X>X+ S)−1B>

B(X>X+ S)−1X> B(X>X+ S)−1B>

]
.

The upper left n×n submatrix of X̃(X̃>X̃)−1X̃> is X(X>X+S)−1X>. Therefore, the sum of the
first n elements on the leading diagonal is the tr{X(X>X+ S)−1X>}.

�

Problem 4

Read Section 4.2.4 and Section 4.3 of the textbook. The additive model of section 4.3
can equally well be estimated as a mixed model.

(a)

Write a function which converts the model matrix and penalty returned by tf.XD
into mixed model form. Hint: because of the constraints the penalty null space is of
dimension 1 now, leading to a slight modification of D+.
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Solution:

First taking the function tf.XD (and dependent functions) from the book (sections 4.2.1 and
4.3.1)

# <r code> ===================================================================== #
# producing constrained versions of X_{j} and D_{J}

tf.XD <- function(x, xk, cmx = NULL, m = 2) { # get X and D subject to constraint
nk = length(xk) # number of knots x_{k}
X = tf.X(x,xk)[ , -nk] # basis model matrix X
D = diff(diag(nk), differences = m)[ , -nk] # square root penalty matrix D
if (is.null(cmx)) cmx = colMeans(X) # values to subtract from the columns of X
X = sweep(X, 2, cmx) # subtracting cmx from columns of X
list(X = X, D = D, cmx = cmx) # returning objects

}
# taking a sequence of knots and an array of x values to produce a model matrix
# for a piecewise linear function

tf.X <- function(x, xj) { # tf basis matrix given data x and knot sequence x_{j}
nk = length(xj) ; n = length(x) # lengths
X <- matrix(NA, n, nk) # creating empthy model matrix X
for (j in 1:nk) X[ , j] = tf(x, xj, j) # filling model matrix X
X # returning model matrix X

}
# defining the basis functions b_{j}(x)

tf <- function(x, xj, j) { # tf: tent function
dj = xj * 0 ; dj[j] = 1# generating j-th tf from set defined by knots x_{j}
approx(xj, dj, x)$y # performing linear interpolation

}
# </r code> ==================================================================== #

Now, writing the function

# <r code> ===================================================================== #
# converting returned constrained model and penalty matrices into mixed model form
mmform <- function(x, xk = NULL, k = 10, sep = TRUE) {

# using default number of knots, k = 10
if (is.null(xk)) # if x_{k} is null,

xk = seq(min(x), max(x), length = k) # build a grid of knots
xd = tf.XD(x, xk) # computing constrained versions of X_{j} and D_{j}
D = rbind(0, xd$D) ; D[1, 1] = 1 # doing modifications
X = t(solve( t(D), t(xd$X) )) # computing model matrix X
if (sep) list(X = X[ , 1, drop = FALSE], Z = X[ , -1], xk = xk)
else list(X = X, xk = xk)

}
# </r code> ==================================================================== #

�
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(b)

Using your function from part (a) obtain the model matrices required to fit the two
term additive tree model, and estimate it using lme. Because there are now two
smooths, two pdIdent terms will be needed in the random list supplied to lme, which
will involve two dummy grouping variables (which can just be differently named copies
of the same variable).

Solution:

# <r code> ===================================================================== #
# generating constrained versions of X_{j} and D_{J} matrices for the variables

x_h <- mmform(trees$Height) ; x_g <- mmform(trees$Girth)

# putting together, building model matrix X with intercept column
X <- cbind(1, x_h$X, x_g$X)

Z_h <- x_h$Z ; Z_g <- x_g$Z # taking square root penalty matrices D

g1 <- g2 <- factor(rep(1, nrow(X))) # length of X, number of rows
library(nlme) # loading library
Y <- trees$Volume # response vector

# fitting the mixed model with positive definite
# matrices structure of class pdIdent

model <- lme(Y ~ X - 1, random = list(g1 = pdIdent(~ Z_h - 1),
g2 = pdIdent(~ Z_g - 1))

)
# </r code> ==================================================================== #

�

(c)

Produce residual versus fitted volume and raw volume against fitted volume plots.

Solution:

# <r code> ===================================================================== #
rsd <- Y - fitted(model) # computing residuals
Y_hat <- fitted(model) # fitted values

par(mfrow = c(1, 2)) # graphical definitions
# plotting

plot(Y_hat, rsd, xlab = "Fitted volume", ylab = "Residues", main = "(a)")
abline(h = 0, lty = 2) # dashed line in zero
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plot(Y_hat, Y, xlab = "Fitted volume", ylab = "Raw volume", main = "(b)")
abline(a = 1, b = 1, lty = 2) # perfect dashed line
# </r code> ==================================================================== #
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Figure 4: (a): fitted volume against residues; (b): fitted volume against raw volume.

In (a) we see the values spread between -4 and 4, what is good (but not so good); and in (b)
we see that the values are quite similar, considering the sample size of 31.

�

(d)

Produce plots of the two smooth effect estimates with partial residuals.

Solution:

# <r code> ===================================================================== #
# getting prediction model matrices X's

X_h <- mmform(trees$Height, xk = x_h$xk, sep = FALSE)$X
X_g <- mmform(trees$Girth, xk = x_g$xk, sep = FALSE)$X

# getting the coefficients for the smooths
coef_h <- as.numeric(coefficients(model)[c(2, 4:11)]) # s(Height)
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coef_g <- as.numeric(coefficients(model)[c(3, 12:19)]) # s(Girth)

s_h <- X_h %*% coef_h # doing the computations by the X's model matrices
s_g <- X_g %*% coef_g

par(mfrow = c(1, 2)) # graphical definitions
# plotting

plot(trees$Height, s_h + rsd, xlab = "Height", ylab = "s(Height)", main = "(a)")
# addying fitted curve

lines(trees$Height, s_h, col = "#0080ff", lwd = 2)

plot(trees$Girth, s_g + rsd, xlab = "Girth", ylab = "s(Girth)", main = "(b)")
# addying fitted curve

lines(trees$Girth, s_g, col = "#0080ff", lwd = 2)
# </r code> ==================================================================== #
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Figure 5: (a): height against s(height); (b): girth against s(girth).

�
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Project proposal

Analyze some datasets using GAMs and GAMMs (when necessary), and with the bayesian frame-
work.

"Which" bayesian framework?

• JAGS (R package rjags): Gibbs sampling;

• INLA (R package INLA): Integrated Nested Laplace Approximation.

To compare and to follow a reasoning starting with a more simple model, some non-bayesian mod-
els will be fitted using the R package mgcv.

Following the reasoning, some more simple models can also be fitted, as linear models and mixed
linear models.

Datasets

1. Trade union data

Data on 534 U.S. workers with eleven variables (SemiPar::trade.union).

R summary output for the dataset:

years.educ south female years.experience union.member
Min. : 2.00 0:378 0:289 Min. : 0.00 0:438
1st Qu.:12.00 1:156 1:245 1st Qu.: 8.00 1: 96
Median :12.00 Median :15.00
Mean :13.02 Mean :17.82
3rd Qu.:15.00 3rd Qu.:26.00
Max. :18.00 Max. :55.00

wage age race occupation sector married
Min. : 1.000 Min. :18.00 1: 67 1: 55 0:411 0:184
1st Qu.: 5.250 1st Qu.:28.00 2: 27 2: 38 1: 99 1:350
Median : 7.780 Median :35.00 3:440 3: 97 2: 24
Mean : 9.024 Mean :36.83 4: 83
3rd Qu.:11.250 3rd Qu.:44.00 5:105
Max. :44.500 Max. :64.00 6:156

Colors by union.member status:
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age

Figure 6: Scatter plots and correlations between the numerical variables of the dataset
trade.union.

2. Sitka spruce data

13 measurements of log-size for 79 Sitka spruce trees grown in normal or ozone-enriched environ-
ments. The first 54 trees have an ozone-enriched atmosphere, the remaining 25 trees have a normal
(control) atmosphere. (SemiPar::sitka).
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Figure 7: For illustration, Sitka spruce tree.

R summary output for the dataset:

id.num order days log.size ozone
Min. : 1 Min. : 1 Min. :152.0 Min. :2.230 0:325
1st Qu.:20 1st Qu.: 4 1st Qu.:227.0 1st Qu.:4.945 1:702
Median :40 Median : 7 Median :528.0 Median :5.630
Mean :40 Mean : 7 Mean :441.8 Mean :5.547
3rd Qu.:60 3rd Qu.:10 3rd Qu.:613.0 3rd Qu.:6.250
Max. :79 Max. :13 Max. :674.0 Max. :7.560

In the next par of graphs, each line correspond to a Sikta spruce tree along the evaluations, in days.

More comments are (will be) given in the project proposal presentation.
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