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Problem 1

Residual checking for non-Gaussian error models is not always as straightforward as it
is in the Gaussian case, and the problems are particularly acute in the case of binary
data. This question explores this issue.

(a)

The following code fits a GLM to data simulated from a simple binomial model and
examines the default residual plots.

# <r code> =============================ooooo—oooooooooooooooooo—o—o———========= |
n <- 100 ; m <- 10 # defining number of observations
x <- runif(n) # simulating n uniform observations with parameters O and 1
lIp <- 3 *xx - 1 # 1lp: linear predictor. \beta_{0} = -1 and \beta_{1} = 3
mu <- binomial()$linkinv(1lp) # generating n values of the inverse link function
y <- rbinom(l:n, m, mu) # generating n binomial sample with parameters m and mu
par(mfrow = c(2, 2), mar = c(4, 4, 2, 2) + .1) # graphical definition

# fitting a glm with response y/m, covariate x and using m as weight
# plotting the graphs of goodness of fit (analysis of residues)

plot( glm(y/m ~ x, family = binomial, weights = rep(m, n)) )
# </r code> ====================================================================

Run the code several times to get a feel for the range of results that are possible even
when the model is correct (as it clearly is in this case).

Solution:

# <r code> ===================================================================== #
probl.a <- function(n = 100, m = 10) {
x = runif(n)
lp=3*x -1
mu = binomial()$linkinv(1lp)
y = rbinom(1l:n, m, mu)
plot( glm(y/m ~ x, family = binomial, weights = rep(m, n)) )
}
par(mfrow = c(6, 4), mar = c(4, 4, 2, 2) + .1)
probl.a() ; probl.a() ; probl.a()
probl.a() ; probl.a() ; probil.a()
# </r code> ==================================================================== #
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Figure 1: Graphs of goodness of fit (analysis of residues), each line is with a different data sample.



In Figure 1 are presented the results from running the code six times (to see the behavior was
runned more, buth to present the behavior in a non-tedious form was choosed to present just six).

General remarks: with different samples we see very few behaviors with a slightly scape of the
assumptions, and with a very small scape, e.g. a slightly increase or decrease tendence
in the residuals vs fitted values and in the scale-location relationship, some values that
scape a little in the Q-Q graph. However, this isn’t the common behavior. In general the
graphical analysis of residuals looks good, with no considerable scapes of the assumptions
(homoscedasticity, scale-location constant relation, residuals normality, non-(high) leverage
values). If the model is correct, the results are pretty stables (different samples (from the
same distribution) returning very similar behaviors).

0

(b)

Explore how the plots change as m (the number of binomial trials) is reduced to 1.
Also examine the effect of sample size n.

Solution:

Twelve scenarios was explored.
Four different numbers of binomial trials (10, 7, 5, 3 and 1) and
three different sample sizes (100, 50 and 25).

Figures 2, 3 and 4:

par(mfrow = c(5, 4), mar = c(4, 4, 2, 2) + .1)

for (i in c(10, 7, 5, 3, 1))

probl.a(n = 100, m = i)
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Figure 2: Graphs of goodness of fit for m = 10 (first line), 7 (second line), 5 (third), 3 (fourth)

and 1 (fifth), with n = 100.



par (mfrow =

c(5, 4), mar =

(i c(10, 7, 5, 3, 1)) probl.a(n =
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Figure 3: Graphs of goodness of fit for m = 10 (first line), 7 (second line), 5 (third), 3 (fourth)

and 1 (fifth), with n = 50.
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Figure 4: Graphs of goodness of fit for m = 10 (first line), 7 (second line), 5 (third), 3 (fourth)

and 1 (fifth), with n = 25.



In the Figures 2, 3 and 4 we see that changing the sample size don’t cause big differences in the
results (graphicals for the goodness of fit). In reality, considering that with a small sample size the
variances tend to be bigger, we can say that the behaviors with different sample sizes are pretty
the same. By the other hand, when we change the number of binominal trials the results changing
a lot, for worst (in all the considered sample sizes). With a number of ten binomial trials the
results are good, but when the number decrease the results start to become bad. With seven we
already see a difference. The graphs are still ok, acceptable, but we see slight scapes of the model
assumptions mencioned in the letter (a). Conform we decrease the number of trials the goodness
of fit became worst and with a number of one trial the results are basically unacceptable. With
less binomial trials we see that the residuals will becoming more dicotomical (with one trial this
is literal).

O

(c)

By repeatedly simulating data from a fitted model, and then refitting to the simu-
lated data, you can build up a picture of how the residuals should behave when the
distributional assumption is correct, and the data are really independent. Write code
to take a glm object fitted to binary data, simulate binary data given the model fitted
values, refit the model to the resulting data, and extract residuals from the resulting
fits. Functions fitted and rbinom are useful here.

Solution:

We repeated the process 44 times, the residuals behave are presented in the Figure 5.

n <- 100 ; m <- 10
rsd <- matrix(NA, nrow = 45, ncol = n)
x <- runif(n)
par(mfrow = c(9, 5), mar = c(2, 4, 2, 1) + .1)
for (i in 1:45) {
lp=3*x -1
binomial ()$linkinv(1lp)
y = rbinom(1l:n, m, mu)
model = glm(y/m ~ x, family = binomial, weights = rep(m, n))
rsd[i, ] = residuals(model)
x = fitted(model, type = "response")
plot(rsd[i, ], xlab = NA, ylab = "Residuals", main = paste("Fit:", i-1))

mu
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We see in Figure 5 that in the first five replications the residuals still present a random
behavior, but always between -3 and 3. After this first replications we see that some patterns
are created. Residuals form groups, as if the data were discretized. In fit 42, for example,
with the exception of one value, we see as if only five values appear (with the addition of
some small random noise).

O

(d)

If rsd contains your residual vector, then plot(sort(rsd), (1:length(rsd) - .5) /
length(rsd)) produces a plot of the ‘empirical CDF’ of the residuals, which can be
useful for characterizing their distribution. By repeatedly simulating residuals, as in
the previous part, you can produce a ‘simulation envelope’ showing, e.g., where the
middle 95% of these ‘empirical CDFs’ should lie, if the model assumptions are met:
such envelopes provide a guide to whether an observed ‘real’ residual distribution is
reasonable, or not. Based on your answer to the previous part, write code to do this.

Solution:

n <- 100 ; m <- 10

X <- runif(n)

lp <- 3 *x -1

mu <- binomial()$linkinv(1lp)

y <- rbinom(l:n, m, mu)

model <- glm(y/m ~ x, family = binomial, weights = rep(m, n))
rsd <- matrix(NA, nrow = 45, ncol = n)

rsd[1, ] = sort(residuals(model))

for (i in 2:45) {
x = fitted(model, type = "response")
lp=3*x -1
mu = binomial ()$linkinv(1lp)
y = rbinom(1l:n, m, mu)
model = glm(y/m ~ x, family = binomial, weights = rep(m, n))
rsd[i, ] = sort(residuals(model))
}
x.axes <- (1:n - .5) / n
lower <- apply(rsd[-1, ], 2, quantile, .025)
med <- apply(rsd[-1, ], 2, quantile, .5)
upper <- apply(rsd[-1, ], 2, quantile, .975)
par(mar = c(4, 4, 0, 2) + .1)
plot(rep(x.axes, 2), c(lower, upper), type = "n"
, xlab = "Probability", ylab = "Residuals")
lines(x.axes, lower) ; lines(x.axes, med, 1ty = 2) ; lines(x.axes, upper)
points(x.axes, rsd[1, 1)

10
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Figure 6: 95% simulated envelope for the residues empirical CDF.

We see in Figure 6 that the simulated envelope isn’t so wide, i.e. it is quite precise, and that
the residuals of the original model are inside the envelope, scaping a little in the right top
part. We expect that 95 in each 100 samples/residuals be inside the envelope.

O

(e)

Plots of the residuals against fitted values, or predictors, are also hard to interpret for
models of binary data. A simple check for lack of independence in the residuals can
be obtained by ordering the residuals according to the values of the fitted values or a
predictor, and checking whether these ordered residuals show fewer (or more) runs of
values above and below zero than they should if independent. The command rsd <-
rsd[sort(fv, return.index = TRUE)$ix] will put rsd into the order corresponding to
increasing fv. It is possible to simulate from the distribution of runs of residuals that
should occur, under independence, as part of the simulation loop used in the previous
part: modify your code to check whether the residuals appear non-independent with
respect to fitted values.

11



Solution:

In Figure 7 (next page) we see that the sorted residuals by the fitted values form a pattern
quickly. After some few simulations we already see that the same values appear several times
with the addition of a small noise.

Even after several simulations the residuals still remain distributed around zero and for all
the scenarios the residuals still appear independent with respect to the fitted values.

# <r code> ================ T T PP PP P P P e s T #
n <- 100 ; m <- 10 # n observations and m binomial trials
x <- runif(n) # generating a random vector of covariates
lIp <- 3 *x -1 # linear predictor
mu <- binomial()$linkinv(1lp) # inverse link function
y <- rbinom(l:n, m, mu) # computing the binomial samples
model <- glm(y/m ~ x, family = binomial, weights = rep(m, n)) # model fitting
rsd <- matrix(NA, nrow = 45, ncol = n) # object to keep the residuals

# keeping the residuals sorting by the fitted values in an increasing order
rsd[1, ] = residuals(model) [order(fitted(model))]

par(mfrow = c(9, 5), mar = c(2, 4, 2, 1) + .1) # graphical definitions
plot(rsd[1, ], xlab = NA, ylab = "Residuals", main = "Fit: 1") # plotting
for (1 in 2:45) { # 44 repetitions
x = fitted(model, type = "response") # generating new data from the fitted model
lp=3*x -1 # linear predictor
mu = binomial()$linkinv(1lp) # inverse link function
y = rbinom(1l:n, m, mu) # computing the binomial samples
model = glm(y/m ~ x, family = binomial, weights = rep(m, n)) # model fitting

# keeping the residuals sorting by the fitted values in an increasing order
rsd[i, ] = residuals(model) [order(fitted(model))]
# plotting
plot(rsd[i, ], xlab = NA, ylab = "Residuals", main = paste("Fit:", 1i))

# </r code> =========== e #
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Problem 2

This question relates to the IRLS method, and gives an alternative insight into the
distribution of the parameter estimators B Let y; be independent random variables
with mean p;, such that g(u;) =7, = X;3, where g is a link function, X a model matrix
and [ a parameter vector. Let the variance of y; be V(u;)¢, where V is a known
function, and ¢ a scale parameter. Define

zi=g (i) (yi —ps) +m and  wp = {V(w)g ()}

(a)

Show that E(z;) = X;5.
Solution:
E(z;) = E[Ql (i) (s — 1) + 771} = E[Ql (Mi)yz} —-E [9/ (Hi)ﬂi] +E(n:) = E(Xiys) — E(Xip) + X

= XiE(y;) — Xipi + Xi3
= Xipy — Xipi + Xi 8

- [x5]

(b)

Show that the covariance matrix of z is W~'¢, where W is a diagonal matrix with
Wi,i = W;.

Solution:

Cov(z;,2j) =0 for i#j, sincey,; are independent random variables.
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Var(z) = E(22) — B(z)?

)

g () (i — 1) + m-)Q] — B [9' (i) (i — i) + m]

(
=E :(g'(ui)(yi —~ ui)>2 +20i9 () (yi — ) + ?7?} — (X;8)?
(

(5 )0 - u»ﬂ + 208 (g ()i~ ) + (X0)° — (XB)°

Var(z) = W~l¢,  with W being a diagonal matrix with W;; = w; = {g (1:)*V (1)} .

(c)

If 3 is estimated by minimization of }_, w;(z; — X;3)* show that the covariance matrix
of the resulting estimates, 3, is (X 'WX) !¢, and find ]E(B)

Solution:

W(z—XB)(z - XB) = W(fz 28 Xzt 5TXTX/3)
Finding 3, % [W <sz 287X Tz + ﬁTXT)m)] - W( —2XTz+ 2XTX/§) — 0

= X" WXB=X"Wz
B=XWX)'XTWaz.

Var(f) = [((XTWX) X TW)T(XTW X)X TW | Var(z)
(XTWX) ' XTW) I XTWX) XTI g
(XTWX) ' XTWX)'(XTWX) ¢
(XTWX) .
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E(3) = E [(XTWX)’lXTWz] = (XTWX)' X TWE(z) = (X WX)"' X TWXJ =
O

(d)

The multivariate version of the central limit theorem implies that as the dimension of
z tends to infinity, X "Wz will tend to multivariate Gaussian. What does this imply
about the large sample distribution of 57

Solution:

Implies that, from the general properties of maximum likelihood estimators, in the large sample
limit

B ~ Normal(3, (X TWX)™'9).

Problem 3

R data frame ldeaths contains monthly death rates from 3 lung diseases in the UK
over a period of several years (see 7ldeaths for details and reference). One possible
model for the data is that they can be treated as Poisson random variables with a
seasonal component and a long term trend component, as follows:

E(deaths;) = By + fit; + asin(27toy; /12 + ¢),

where fy, (1, a, and ¢ are parameters, t; is time since the start of the data, and toy is
time of year, in months (January being month 1).

(a)

By making use of basic properties of sines and cosines, get this model into a form
suitable for fitting using glm, and fit it. Use as.numeric(ldeaths) to treat ldeaths as a
regular numeric vector rather than a time series object.

Solution:

Linear predictor:
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Bo + Piti + acsin(mtoy; /6 4+ ¢) = By + Bit; + v sin(wtoy;/6) + 6 cos(mtoy;/6),

with a = /72 + 62 and ¢ = 0//~% + 2.

# <r code> =====================================================================

y <- as.numeric(ldeaths) # response vector
t <- 1l:length(y) # t_{i}: time since the start of the data
toy <- rep(1:12, 6) # toy_{i}: time of year, in months
formula = y ~ t + sin(toy * pi / 6) + cos(toy * pi / 6) # model formula
(fit <- glm(formula, family = "poisson'")) # fitting the model

# </r code> ============= ...,

Call: glm(formula = formula, family = "poisson")
Coefficients:
(Intercept) t sin(toy * pi/6) cos(toy * pi/6)
7.682867 -0.002496 0.303668 0.216698

Degrees of Freedom: 71 Total (i.e. Null); 68 Residual
Null Deviance: 12330
Residual Deviance: 1514 AIC: 2200

(b)

Plot the raw data time series on a plot, with the predicted time-series overlaid.

Solution:

# <r code> ================ s —===——s————===—====—=—==============
par(mar = c(4, 4, 1, 1) + .1) # graphical definitions
# plotting the raw data time series

plot(y 7 t, type = "1", axes = FALSE, xlab = "Time", ylab = "ldeaths", lwd = 2)
abline(v = c(0, 72), h = seq(min(y), max(y), length = 2), col = "gray90")

lines(t, fitted(fit), col = 2, lwd = 2) # adding the predicted time-series

Axis(side
, at 12 * ¢(0:6), labels = c(1974, 1975, 1976, 1977, 1978, 1979, 1980))
Axis(side = 2, at = seq(1300, 4000, 500))

1 # plotting x- and y-axes

# </r code> ==========s==ss==sS=SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSsSSSSsss
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Figure 8: Raw data time series, in black, with the predicted time-series overlaid, in red.

(c)

Is the model an adequate fit?

Solution:
In Figure 9 (next page) we see heteroskedasticity in the relation residuals vs fitted, we see
that the residues normality isn’t attended in the tails, we see a slight increase in the scale-

location relation when the predicted values increase, and we see that some few points have
a high leverage. In general the model doesn’t present an very adequate fit.

In this model we aren’t considering the correlation between observations along time, maybe
this can justify the non-adequate fit. Others linear predictors can also be considered.

par(mfrow = c(2, 2))
plot(fit)
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Figure 9: Graphical analysis of residues, goodness-of-fit.
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