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Problem 1

Consider a model with two random effects of the form:

yij = α + bi + cj + εij,

where i = 1, . . . , I, j = 1, . . . , J, bi ∼ N(0, σ2
b ), cj ∼ N(0, σ2

c ), and εij ∼ N(0, σ2) and all these
r.v.’s are mutually independent. If the model is fitted by least squares then

σ̂2 =
RSS

IJ − I − J + 1

is an unbiased estimator of σ2, where RSS is the residual sum of squares from the
model fit.

(a)

Show that, if the above model is correct, the averages ȳi· = 1
J

∑J
j=1 yij/J are governed

by the model:

ȳi· = a+ ei,

where ei are i.i.d. N(0, σ2
b +σ2/J) and a is a random intercept term. Hence suggest how

to estimate σ2
b .

Solution:

By averaging over each i, the random effect bi is absorved into the independent residual term

ei = bi +
1

J

J∑
j=1

εij.

Adding the random effect cj to the intercept we have the random intercept a.

ȳi· = α + cj + ei

= a+ ei, with

• ei
i.i.d.∼ N

(
0, σ2

b + σ2

J

)
,

• ei’s are mutually independent random variables.

From the first model we have

σ̂2 =
RSS

IJ − I − J + 1
.
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From the averaged model we have

σ̂b
2 +

σ̂2

J
=

RSS?

J
,

with RSS? being the residual sum of squares for this averaged model.

Hence, an unbiased estimator for σ2
b is

σ̂b
2 =

RSS?

J
− RSS

J(IJ − I − J + 1)
.

�

(b)

Show that the averages ȳ·j = 1
I

∑J
i=1 yij are governed by the model:

ȳ·j = a
′
+ e

′

j,

where the e′j are i.i.d. N(0, σ2
c + σ2/I) and a

′ is a random intercept parameter. Suggest
how to estimate σ2

c .

Solution:

By averaging over each j, the random effect cj is absorved into the independent residual term

e
′

j = cj +
1

I

I∑
i=1

εij.

Adding the random effect bi to the intercept we have the random intercept a′ .

ȳ·j = α + bi + e
′

j

= a
′
+ e

′

j, with

• e
′
j
i.i.d.∼ N

(
0, σ2

c + σ2

I

)
,

• e
′
j’s are mutually independent random variables.

From the first model we have

σ̂2 =
RSS

IJ − I − J + 1
.

From the averaged model we have

σ̂c
2 +

σ̂2

I
=

RSS?

I
,
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with RSS? being the residual sum of squares for this averaged model.

Hence, an unbiased estimator for σ2
b is

σ̂c
2 =

RSS?

I
− RSS

I(IJ − I − J + 1)
.

�

Problem 2

(a)

Show that if X and Z are independent random vectors, both of the same dimension,
and with covariance matrices Σx and Σz, then the covariance matrix of X+Z is Σx+Σz.

Solution:

In the diagonal of the covariance matrix of X + Z we have the variance V(X + Z) and in the
off-diagonal we have the covariances. If X and Z are independent Cov(X + Z) = Σx+z = 0, so by
definition

V(X + Z) = VX + VZ + 2Cov(X + Z) = VX + VZ + 2 · 0 = VX + VZ,

that in matrix context is equivalent to write Σx + Σz.

Therefore, for the random vectors X and Z the covariance matrix of X + Z is Σx + Σz.
�

(b)

Consider a study examining patients’ blood insulin levels 30 minutes after eating, y,
in relation to sugar content, x, of the meal eaten. Suppose that each of 3 patients
had their insulin levels measured for each of 3 sugar levels, and that an appropriate
linear mixed model for the j-th measurement on the i-th patient is

yij = α + βxij + bi + εij,

where bi ∼ N(0, σ2), εij ∼ N(0, σ), and all the random effects and residuals are mutually
independent.
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i.

Write this model out in matrix vector form.

Solution:

yi = Xiβ + Zibi + εi, i = 1, 2, 3

with (for j = 1, 2, 3)

yi =

yi1yi2
yi3

 , Xi = I3, β =

α + β1
α + β2
α + β3

 , Zi =

1
1
1

 , εi =

εi1εi2
εi3

 .

�

ii.

Find the covariance matrix for the response vector y.

Solution:

Cov(yi,yi′ ) = Cov(Xiβ + Zibi + εi,Xi′β + Zi′ bi′ + εi′ )

= 0, i 6= i
′
,

Vyi = V(Xiβ + Zibi + εi)

= V(Zibi + εi)

= ZiVbiZ>i + Vεi
= Ziσ

2Z>i + σI3

=

σ + σ2 σ2 σ2

σ2 σ + σ2 σ2

σ2 σ2 σ + σ2

 .

�

Problem 3

The data frame Gun (library nlme) is from a trial examining methods for firing naval
guns. Two firing methods were compared, with each of a number of teams of 3
gunners; the gunners in each team were matched to have similar physique (Slight,
Average or Heavy). The response variable rounds is rounds fired per minute, and
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there are 3 explanatory factor variables, Physique (levels Slight, Medium and Heavy);
Method (levels M1 and M2) and Team with 9 levels. The main interest is in determining
which method and/or physique results in the highest firing rate and in quantifying
team-to-team variability in firing rate.

# <r code> ===================================================================== #
library(nlme) # loading package
data(Gun) # loading dataset
# </r code> ==================================================================== #

(a)

Identify which factors should be treated as random and which as fixed, in the analysis
of these data.

Solution:

Fixed: Method & Physique
We have interest in compare the levels of this variables. The interest is do inference about,
take conclusions. Therefore, this factors should be treated as fixed effect.

Random: Team
The interest about this variable is quantify and control variability. The levels are random,
we don’t have the interest in expand or generalize the conclusions about this factors to "all
the population of possibly teams". Therefore, this factor should be treated as random effect.

�

(b)

Write out a suitable mixed model as a starting point for the analysis of these data.

Solution:

roundsijk = µ+methodi+physiquej +ak+bik+cjk+εijk, i = 1, 2; j = 1, 2, 3; k = 1, . . . , 9;

with

• ak ∼ N(0, σ2
intercept); bik ∼ N(0, σ2

method); cjk ∼ N(0, σ2
physique),

• εijk ∼ N(0, σ2),

• all the random effects and residuals are mutually independent.

The dataset Gun have a "groupedData" class, the random effect for Team is already defined in the
object structure. I’m specifying here this random effect structure.

�
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(c)

Analyse the data using lme in order to answer the main questions of interest. Include
any necessary follow-up multiple comparisons (as in the previous question) and report
your conclusions.

Solution:

# <r code> ===================================================================== #
# fitting the model specified in (b)

# the dataset Gun have a "groupedData" class, the random effect for Team is alrea-
model <- lme(rounds ~ Method + Physique, Gun) # dy defined in the object structure
# </r code> ==================================================================== #

Looking to the goodness of fit:

# <r code> ===================================================================== #
library(latticeExtra) # loading graphical library
res <- residuals(model, type = "pearson") # pearson residuals
fit <- fitted(model) # fitted values
print( # graphical analysis of goodness of fit

xyplot(res ~ fit, col = 1
, xlab = "Fittted values", ylab = "Pearson residuals", main = "Model fit"
, panel = function(...){

panel.xyplot(...)
panel.loess(fit, res, lwd = 3, col = "#0080ff")})

, position = c(0, .5, .5, 1), more = TRUE)
print(

xyplot(sqrt(abs(res)) ~ fit, col = 1, xlab = "Fitted values"
, ylab = "Pearson residuals", main = "Mean/variance relation"
, panel = function(...){

panel.xyplot(...)
panel.loess(fit, sqrt(abs(res)), lwd = 3, col = "#0080ff")})

, position = c(.5, .5, 1, 1), more = TRUE)
print(

xyplot(Gun$rounds ~ fit, col = 1, xlab = "Fitted values"
, ylab = "Rounds fired per minute", main = "Observed x fitted values"
, panel = function(...){

panel.xyplot(...)
panel.loess(fit, Gun$rounds, lwd = 3, col = "#0080ff")})

, position = c(0, 0, .5, .5), more = TRUE)
print(

qqmath(res, col = 1, xlab = "Theoretical quantile", ylab = "Sampling quantile"
, main = "Normality") +

layer(panel.qqmathline(res, lwd = 3, col = "#0080ff"))
, position = c(.5, 0, 1, .5))

# </r code> ==================================================================== #
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Figure 1: Graphical analysis of goodness of fit.

Given the small sample size, 36 observations, the behaviours observed in Figure 1 are very sat-
isfatory, with no considerable deviation from the model assumptions (homocedasticity, "constant"
mean/variance relation, normality of residuals).

After this verifications we are able to take conclusions about the model estimates.

Performing a variance analysis tables we see that Physique is not significant.

# <r code> ===================================================================== #
anova(model) # variance analysis table
# </r code> ==================================================================== #

numDF denDF F-value p-value
(Intercept) 1 26 4827.168 <.0001
Method 1 26 343.511 <.0001
Physique 2 6 1.697 0.2606
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Looking to the individual coefficients t-tests we can see better as we don’t have a significant
difference between the Physique levels.

# <r code> ===================================================================== #
round(summary(model)$tTable, 3) # fixed effects estimates
# </r code> ==================================================================== #

Value Std.Error DF t-value p-value
(Intercept) 23.587 0.495 26 47.684 0.000
MethodM2 -8.511 0.460 26 -18.487 0.000
Physique.L -1.149 0.904 6 -1.271 0.251
Physique.Q -0.063 0.615 6 -0.103 0.921

In Figure 2 the boxplots for Physique levels are presented. The model results confirm what the
figure show. The rounds fired per minute from one Physique level to the other are very similar.

# <r code> ===================================================================== #
bwplot(rounds ~ Physique, Gun # boxplots for physique levels

, xlab = "Physique", ylab = "Rounds fired per minute"
, panel = function(...){

panel.grid(v = 0, h = -1)
panel.bwplot(...)})

# </r code> ==================================================================== #
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Figure 2: Boxplots for Physique levels.

The model present significant differences between the Method’s.
In Figure 3, looking to the data, we see that with the exception of T2S (level Slight) the medians
don’t differ so much. What differ is the variability.
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# <r code> ===================================================================== #
bwplot(rounds ~ Method | Team, Gun, layout = c(9, 1)

, xlab = "Method", ylab = "Rounds fired per minute"
, strip = strip.custom(bg = "white")
, panel = function(...){

panel.grid(v = 0, h = -1)
panel.bwplot(...)})

# <r code> ===================================================================== #
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Figure 3: Boxplots for Method levels divided by the Team’s.

The random effects values are presented bellow. In the (Intercept) are represented the MethodM2
and the Physique.S. The values differ from one level to another, which justifies the use of the
random effect component.

# <r code> ===================================================================== #
ranef(model) # extracting random effects
# <r code> ===================================================================== #

(Intercept) MethodM2 Physique.L Physique.Q
T1S -0.40267487 -0.064690941 0.87512523 -0.53207380
T3S -0.28073979 -0.045102590 0.61012596 -0.37095533
T2S 0.68956961 0.110782404 -1.49862760 0.91116198
T1A 0.02835393 0.004555287 -0.06162100 0.03746546
T2A 0.03280224 0.005270248 -0.07128835 0.04334332
T3A -0.01975017 -0.003173118 0.04292260 -0.02609691
T1H 0.05883425 0.009452670 -0.12786313 0.07774077
T3H -0.02301541 -0.003697796 0.05001885 -0.03041146
T2H -0.08337980 -0.013396164 0.18120743 -0.11017403
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The biggest variability is observed in the level Slight and the smallest in the level Average.

About the fixed effect:

# <r code> ===================================================================== #
round(summary(model)$tTable[ , 1:2], 3) # fixed effects estimates
# </r code> ==================================================================== #

Value Std.Error
(Intercept) 23.587 0.495
MethodM2 -8.511 0.460
Physique.L -1.149 0.904
Physique.Q -0.063 0.615

For the Method 1 and Slight Physique the estimate rounds fired per minute is 23.587. If you
change for the Method 2 the value decrease to 15.076 (23.587 - 8.511). For Method 1 and Average
Physique the estimate rounds fired per minute is 22.438 (23.587 - 1.149). For Heavy Physique the
estimate is 23.524 (23.587 - 0.063). The same reasoning is applied to achieve the other estimates.
The Method 1 and Slight Physique results in the highest firing rate.

�
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