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Data and goals

In this project we study different approachs to predict the sucess of bank telemarketing. As
instrument we have a dataset related with direct marketing campaigns based on phone calls of a
Portuguese banking institution. Often, more than one contact to the same client was required,
in order to access if the product (bank term deposit) would be (yes) or not (no) subscribed.

The data under study here is called Bank Marketing Dataset (BMD) and he was found in the
Machine Learning Repository (UCI). The data is public available in the url https://archive.
ics.uci.edu/ml/datasets/Bank+Marketing#. The size of the dataset is considerably large,
especially if we consider its origin. Data from clients of financial institutions are usually difficult
to find, and when found, are rarely available in this quantity. In the BMD data we have 41188
observations, with eighteen features.

The eighteen features are briefly described in Table 1, were in the left column we have the
original feature name in the dataset, and in the right column its description, mentioning also
if the feature is numeric, categorial, and with how many levels (if categorical, of course). The
first one called of y is the response, the desired target. The other features are presented in the
same order that they appear in the dataset.

To know better the data some descriptive analysis is performed, see Figure 1 and Figure 2.

Table 1: Features description of the Bank Marketing Dataset (BMD).

Feature Description

y desired target. has the client subscribed a term deposit? (no, yes)

age numeric

job type of job, twelve categories

marital marital status, four categories

eduacation eight categories

housing has housing loan? (no, yes, unknown)

loan has personal loan? (no, yes, unknown)

contact contact communication type (cellular, telephone)

month last contact month of year (twelve levels, months)

day.of.week last contact day of the week (five levels, days)

campaign number of contacts performed during this campaign and for this client

previous number of contacts performed before this campaign and for this client

poutcome previous marketing campaign (failure, nonexistent, success)

emp.var.rate numeric. employment variation rate - quarterly indicator

cons.price.idx numeric. consumer price index - monthly indicator

cons.conf.idx numeric. consumer confidence index - monthly indicator

euribor3m numeric. euribor 3 month rate - daily indicator

nr.employed numeric. number of employees - quarterly indicator
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age 0.0046 0.024 −0.00037 0.00086 0.13 0.011 −0.018

campaign −0.079 0.15 0.13 −0.014 0.14 0.14

previous −0.42 −0.20 −0.051 −0.45 −0.50

emp.var.rate 0.78 0.20 0.97 0.91

cons.price.idx 0.059 0.69 0.52

cons.conf.idx 0.28 0.10

euribor3m 0.95

nr.employed

Figure 1: Scatterplot lower triangular matrix and correlation upper triangular matrix for all
the quantitative features presented in the Bank Marketing Dataset (BMD).

In Figure 1 we see the scatterplots and correlations, two-by-two, for all the eight numerical
features in the BMD. In more than half of them we see a random behaviour, that is also
described by a correlation close to zero or between the interval -0.3 and 0.3. A (very) strong
(and positive) correlation is seen in three cases. emp.var.rate vs. euribor3m (cor. 0.97),
euribor3m vs. nr.employed (cor. 0.95), and emp.var.rate vs. nr.employed (cor. 0.91),
i.e., involving only three features - employment variation rate, Euro Interbank Offered Rate
(Euribor) and number of employees. During the analysis this point can be better studied.

Already in Figure 2 we have the frequencies for each level of the categorical features in
the BMD. First, we see that the desired target is unbalanced, with more than 85% of the
observations corresponding to clients that didn’t subscribed to a term deposit. An equilibrium
between levels is only present in the day.of.week last contact feature. By this Figure we can
also see that the last contact of most of the clients was in may (month feature), that most of
the clients have a nonexistent previous marketing campaign (poutcome feature), that they are
married (marital feature) and that most have a job in the administrative sector.
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4252
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Figure 2: Bar plots for all the qualitative features presented in the Bank Marketing Dataset
(BMD).
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Using this features, described in Table 1, the goal here is test several algorithms to see how
good they are to predict the desired target, i.e., predict, given the seventeen features, if the
bank term deposit would be or not subscribed. The algorithms used for this task are described
in the next section, together with some extra informations about the analysis procedure.

Methods

To predict, given the seventeen features, if the bank term deposit would be or not subscribed,
fifteen algorithms are used. They are: four generalized linear models with a Bernoulli response
and with different link functions (logit, probit, cauchit and complementary log-log); a standard
linear regression model; naive Bayes classifier; three discriminant analysis algorithms (linear,
quadratic and regularized); four support vector machines with different kernels (linear, polyno-
mial, radial and sigmoid); a random forest; and a decision tree.

As mentioned before, the BMD consists of 41188 observations. A random sample of 10%
of this size, 4119 observations, was withdrawn to be used as a test dataset. The rest, 37069
observations, was used as a train dataset.

All the analysis are performed using the R [1] language and environment for statistical
computing. To take advantage of the most efficient available algorithm versions, we use some R

libraries where the algorithms are implemented. A brief description of the algorithms is given
now, always mentioning the corresponding R library where the algorithm is implemented.

Generalized Linear regression Model (GLM) with Bernoulli response

The GLM is a flexible generalization of ordinary linear regression that allows responses with error
distribution models other than a normal distribution. The GLM generalizes linear regression
by allowing the linear model to be related to the response via a link function. In a GLM each
outcome Y of the response is assumed to be generated from a particular distribution in the
exponential family, a large range of probability distributions. The mean, µ, of the distribution
depends on the features, X, through:

E(Y ) = µ = g−1(Xβ),

where E(Y ) is the expected value of Y ; Xβ is the linear predictor, a linear combination
of unknown parameters β; g is the link function. The unknown parameters, β, are typically
estimated with maximum likelihood.

When the response data, Y , are binary (taking on only values 0 and 1), the distribution
function is generally chosen to be the Bernoulli distribution and the interpretation of µi is then
the probability, p, of Yi taking on the value one. The logit is the canonical link function and
when used the resulting model is called of logistic regression. However, other link function can
be used. The four most popular link functions, and used here, are:

• Logit function: g(p) = ln
(

p
1−p

)
;

• Probit or inverse Normal function: g(p) = Φ−1(p);

• Cauchit function: tan
(
πp− π

2

)
;

• Complementary log-log function: g(p) = log(− log(1− p)).
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To test the significance of the features we use the Akaike information criterion (AIC). Given
a collection of models, the AIC estimates the quality of each model, relative to each of the other
models. Thus, AIC provides a means for model selection. The AIC value of a given model is
the following:

AIC = 2par − 2 log L̂.

With L̂ being the maximum value of the likelihood function for the model and par being
the number of estimated parameters in the model.

More details about GLM can be see, for example, in https://en.wikipedia.org/wiki/

Generalized_linear_model.

Linear regression Model (LM)

LM is a linear approach to modelling the relationship between a response and features, where
the response have a normal error distribution. Commonly, the conditional mean of the response
given the values of the features is assumed to be an affine function of those values. This
relationship is modeled through a disturbance term or error ε - an unobserved feature that adds
”noise” to the linear relationship between the response and features. Thus the model takes, in
matrix notation, the form

Y = Xβ + ε.

The unknown parameters, β, are typically estimated via least squares. Ordinary Least
Squares (OLS) method minimizes the sum of squared residuals, and leads to a closed-form
expression for the estimated value of the unknown parameter β

β̂ = (X>X)−1X>Y.

More details about LM can be see, for example, in https://en.wikipedia.org/wiki/

Linear_regression.

Naive Bayes classifier

Naive Bayes classifiers are a family of simple ”probabilistic classifiers” based on applying Bayes’
theorem with strong (naive) independence assumptions between the features. Naive Bayes is a
reference to the use of Bayes’ theorem in the classifier’s decision rule, but is not (necessarily) a
Bayesian method.

Considering each attribute and class label as random variables, given a record with attributes
A1, A2, . . . , An, and a goal - predict class C, we want to find the value of C that maximizes
P(A1, A2, . . . , An | C)P(C). The naive Bayes classifier assume independence among attributes
Ai when class is given, therefore

P(A1, A2, . . . , An | C) = P(A1 | Cj)P(A2 | Cj) . . .P(An | Cj).

This approach greatly reduces the computation cost - only counts the class distribution, and
can estimate P(Ai | Cj) for all Ai and Cj. A new point is classified to Cj if Cj

∏
P(Ai | Cj) is

maximal.
In R the main implementation of the naive Bayes classifier is found in the e1071 library [2].

6

https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression


Discriminant Analysis

Linear Discriminant Analysis (LDA) or discriminant function analysis is a generalization of
Fisher’s linear discriminant, a method used to find a linear combination of features that char-
acterizes or separates two or more classes of objects or events.

LDA approaches the problem by assuming that the conditional probability density func-
tions (considering two classes) are both normally distributed with mean and covariance param-
eters. Under this assumption, the Bayes optimal solution is to predict points as being from
the second class if the log of the likelihood ratios is bigger than some threshold. Without
any further assumptions, the resulting classifier is referred to as QDA (Quadratic Discrimi-
nant Analysis). LDA instead makes the additional simplifying homoscedasticity assumption
(i.e. that the class covariances are identical). More details about can be see, for example, in
https://en.wikipedia.org/wiki/Linear_discriminant_analysis.

Considering two more parameters that flexibilize the possible difference between the covari-
ance matrices between classes and the dependence between the same covariances, we have a
Regularized Discriminant Analysis (RDA).

In R the main implementation for LDA and QDA is found in the MASS library [3], and the
main implementation for RDA is found in the klaR library [4].

Support Vector Machine (SVM)

With SVM a data point is viewed as a p-dimensional vector (a list of p numbers), and we want
to know whether we can separate such points with a (p-1)-dimensional hyperplane. There are
many hyperplanes that might classify the data. One reasonable choice as the best hyperplane is
the one that represents the largest separation, or margin, between the two classes. So we choose
the hyperplane so that the distance from it to the nearest data point on each side is maximized.
If such a hyperplane exists, it is known as the maximum-margin hyperplane. More formally,
a SVM constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space,
which can be used for classification, regression, or other tasks like outliers detection.

Often happens that the sets to discriminate are not linearly separable in that space. We
can construct nonlinear classifiers applying the kernel trick, K(xi, xj), to maximum-margin
hyperplanes. Here we use the four most common kernels in SVM

• Linear: K(xi, xj) = 〈xi, xj〉

• Polynomial K(xi, xj) = (c0 + γ 〈xi, xj〉)d
• Radial: K(xi, xj) = exp(−γ ‖xi, xj‖2)

• Sigmoid: K(xi, xj) = tanh(c0+γ 〈xi, xj〉)

More details about can be see, for example, in https://en.wikipedia.org/wiki/Support_

vector_machine. In R the main implementation of SVM is found in the e1071 library [2].

Random forest

Random forests are an ensemble learning method that operate by constructing a multitude
of decision trees at training time and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees. Random decision forests
correct for decision trees’ habit of overfitting to their training set.

Random forests differ in only one way from tree bagging: they use a modified tree learning
algorithm that selects, at each candidate split in the learning process, a random subset of the
features. Tree bagging repeatedly selects a random sample with replacement of the training set
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and fits trees to these samples. This bootstrapping procedure leads to better model performance
because it decreases the variance of the model, without increasing the bias. More details about
can be see, for example, in https://en.wikipedia.org/wiki/Random_forest.

In R the main implementation of random forest is found in the randomForest library [5].

Decision tree

A decision tree is a decision support tool that uses a tree-like graph or model of decisions and
their possible consequences, including chance event outcomes, resource costs, and utility. It is
one way to display an algorithm that only contains conditional control statements. Decision
trees are commonly used in operations research, specifically in decision analysis, to help identify
a strategy most likely to reach a goal, but are also a popular tool in machine learning.

A decision tree is a flowchart-like structure in which each internal node represents a ”test”
on an attribute, each branch represents the outcome of the test, and each leaf node represents a
class label. The paths from root to leaf represent classification rules. Algorithms for constructing
decision trees usually work top-down, by choosing a variable at each step that best splits the
set of items. Different algorithms use different metrics for measuring ”best”. These generally
measure the homogeneity of the target within the subsets and are applied to each candidate
subset, the resulting values are combined (e.g., averaged) to provide a measure of the quality
of the split.

In R the main implementation of decision tree is found in the rpart library [6].

Results

With the GLM’s and LM we are able to do feature selection. Here we do this via AIC. Which
features are keeped and which features are dropped can be seen in Table 2.

The main measure that can be used to compare all the fifthteen algorithms is the Receiver
Operating Characteristic curve, i.e. ROC curve. A graphical plot that illustrates the diagnostic
ability of a binary classifier system as its discrimination threshold is varied. The ROC curve
is created by plotting the specificity, true negative rate, against the sensitivity, true positive
rate, at various threshold settings. More details about can be see, for example, in https://en.

wikipedia.org/wiki/Receiver_operating_characteristic. In R the main implementation
of the ROC curve is found in the pROC library [7].

When dealing with ROC curves the main measure returned is the Area Under the Curve
(AUC), that is qual to the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one. The AUC for each model is presented in
Figure 3. The highest is obtained with the probit link function in the GLM.

Others measures as the specificity, sensitivity and the risk, are presented in Table 3. The risk
here is defined as the proportion of observations in the test dataset that are wrongly classified
by the trained model.

The GLM’s and the LM approachs return a probability for each observation, where more
close to zero means that the observation is more likely to be provinient from the no class -
a client that did not subscribed a term deposit. However, with the ROC curve we obtain a
optimized threshold for this decision. Thus, to compute the risk in this models we use this
obtained threshold, instead the default value half - that in a first moment is the logical choice,
since the returned probability in between zero and one. This optimal threshold is defined as
the cutting point that returns the best specificity and sensitivity - in general we don’t want a
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good specificity value but with a bad sensitivity, or vice-versa. We want the best possible value
- combination - for both, at the same time. So the threshold of this scenario is the used value
to compute the risk in this models. The others algorithms return directly the class label, not a
probability.

Again, this values - specificity, sensitivity and the classification risk/error - can be checked
in Table 3.

Table 2: Remaining features in each model after features selection by AIC.

Feature
Model

Logistic Probit Cauchit Comp. log-log Least squares

age

job ! ! ! ! !

marital

eduacation

housing

loan

contact ! ! ! ! !

month ! ! ! ! !

day.of.week ! ! ! ! !

campaign ! ! ! ! !

previous

poutcome ! ! ! ! !

emp.var.rate ! ! ! ! !

cons.price.idx ! ! ! ! !

cons.conf.idx ! ! ! ! !

euribor3m ! ! ! !

nr.employed ! ! ! !
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Figure 3: ROC curve for each model (in the test) with respective AUC and thresholds.
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Table 3: Specificity, sensitivity and risk for each fitted model in the test Bank Marketing Dataset
(BMD), in bold we have the best performances. The models in bold are the models with the
best AUC.

Model Specificity Sensitivity Risk

Logistic regression (GLM with logit link) 0.891 0.609 0.212

Probit regression (GLM with probit link) 0.888 0.609 0.197

Cauchit regression (GLM with cauchit link) 0.893 0.594 0.261

Comp. log-log regression (GLM with comp. log-log link) 0.878 0.614 0.265

Least squares regression (linear regression) 0.886 0.609 0.16

Naive Bayes 0.829 0.621 0.192

Linear discriminant analysis 0.950 0.377 0.107

Quadratic discriminant analysis 0.897 0.558 0.137

Radial discriminant analysis 0.966 0.278 0.103

Linear support vector machine 0.985 0.188 0.095

Polynomial support vector machine 0.992 0.171 0.09

Radial support vector machine 0.987 0.188 0.094

Sigmoid support vector machine 0.939 0.227 0.133

Random forest (bagging) 0.973 0.309 0.093

Decision tree 0.992 0.176 0.09

Conclusion

Keep a feature means that the feature was significant, statistically significant, in describing
the difference between the classes of the desired target - if the bank term deposit would be
or not subscribed. In Table 2 we can see a very high concordance between the models, in a
general form. Each model finished with eleven, from seventeen, features. This are the dropped,
nonsignificant in describing the difference between classes, features in all models: age, marital
status, education, housing loan, personal loan, and previous number of contacts performed
before this campaign and for this client.

Looking by the AUC, Figure 3, the best model is the GLM with probit link function.
However, very similar values are obtained with the others link functions and with the LM. With
the other algorithms the AUC’s are considerable smaller, but always above 0.55 (a not bad
value, but also not so good). Looking to the other computed measures in Table 3, we see that
for all the algorithms we obtain a very good specificity, true negative rate, and a bad or not so
good sensitivity, true positive rate. For all the algorithms we have a good risk value, less than
0.30, but a very good risk value is obtained only with the non-GLM/LM techniques.

The best specificities - pratically perfect - are obtained with the SVM with polynomial kernel
and with the decision tree. However, the sensitivities are very low (nevertheless the risks are
the lowest). The best sensitivity is obtained with the GLM with complementaty log-log link
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function. The corresponding specificity of 0.878 is still pretty good, but the risk of 0.265 is not.
To summarize, in a general form we obtain a good specificity with all algorithms - with

some a vey good specificity. However, we only obtain a sensitivity above 0.5 with the GLM’s,
LM, naive Bayes and quadratic discriminant analysis. Using as a final criterium the risk in the
models with specificity and sensitivity above 0.6, we have the naive Bayes, LM and GLM with
probit link function. This three present very similar measures, making very hard to choose one
between them tree.
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