
CS 229 - Machine Learning
Xiangliang Zhang

Computer Science (CS)/Statistics (STAT) Program
Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division

King Abdullah University of Science and Technology (KAUST)

HOMEWORK
VI

Henrique Aparecido Laureano

Spring Semester 2018

Contents
Question 1 2

(1) . 2
(2) . 3

Question 2 4

Question 3 5
1) . 6
2) . 7
3) . 8
4) . 9

An Additional Exercise 10

1

Question 1: Property of derivatives of Error function
(Exercise 5.6 and 5.7 of Bishop’s book)

(1)

Show the derivative of the error function

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)} (5.21)

with respect to the activation ak for an output unit having a logistic sigmoid activation
function

yk =
1

1 + exp(−ak)
satisfies

∂E

∂ak
= yk − tk. (5.18)

Solution:

∂E

∂ak
= −

[
tk
yk

∂yk
∂ak

+
1− tk
1− yk

∂(−yk)
∂ak

]
= −

[
tk
yk

exp(−ak)
(1 + exp(−ak))2

− 1− tk
1− yk

exp(−ak)
(1 + exp(−ak))2

]
= −

[
tk(1 + exp(−ak))

exp(−ak)
(1 + exp(−ak))2

− 1− tk
exp(−ak)

1+exp(−ak)

exp(−ak)
(1 + exp(−ak))2

]
= −

[
tk

exp(−ak)
1 + exp(−ak)

− (1− tk)
1 + exp(−ak)
exp(−ak)

exp(−ak)
(1 + exp(−ak))2

]
= −

[
tk

exp(−ak)
1 + exp(−ak)

− 1− tk
1 + exp(−ak)

]
= −

[
tk(1− yk)− (1− tk)yk

]
= −

[
tk − yk

]
= yk − tk.

�

2

(2)

Show the derivative of the error function

E(w) = −
N∑

n=1

K∑
k=1

tnk ln ynk(xn,w) (5.24)

with respect to the activation ak for output units having a softmax activation function

yk(x,w) =
exp(ak(x,w))∑
j exp(aj(x,w))

satisfies

∂E

∂ak
= yk − tk. (5.18)

Hint : for each xn, its true label has tnk = 0 or 1, and
∑K

k=1 tnk = 1. That is to say, for
the activation ak activated by an x, the corresponding tk could be either 1 or 0.

Solution:

∂E

∂ak
= −

N∑
n=1

tn
∂ ln yn(xn,w)

∂ak
.

yn(x,w) =
exp(an(x,w))∑
j exp(aj(x,w))

⇒ ln yn(xn,w) = an(x,w)− ln
∑
j

exp(aj(x,w))

we have

∂ ln yn(xn,w)

∂ak
= δnk −

1∑
j exp(aj(x,w))

∂
∑

j exp(aj(x,w))

∂ak
,

with δnk being the Kronecker delta (1 or 0).

Then the gradient of the softmax-denominator is

∂
∑

j exp(aj(x,w))

∂ak
=
∑
j

exp(aj(x,w))δjk = exp(ak(x,w))

which gives

∂ ln yn(xn,w)

∂ak
= δnk −

exp(ak(x,w))∑
j exp(aj(x,w))

= δnk − yk.

So the gradient of E with respect to ak is then

∂E

∂ak
=

N∑
n=1

tn(yk − δnk) = yk

(N∑
n=1

tn

)
− tk = yk · 1− tk = yk − tk .

�

3

Question 2: A different error function
(Exercise 5.9 of Bishop’s book)

The error function

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)} (5.21)

for binary classification problems was derived for a network having a logistic-sigmoid
output activation function, so that 0 ≤ y(x,w) ≤ 1, and data having target values
t ∈ {0, 1}. Derive the corresponding error function if we consider a network having an
output −1 ≤ y(x,w) ≤ 1 and target values t = 1 for class C1 and t = −1 for class C2.
What would be the appropriate choice of output unit activation function?

Solution:

Scaling and shifting the binary outputs directly gives the activation function (using the motation
from (5.19))

y = 2σ(a)− 1.

The error function is constructed from (5.21) by applying the inverse transformation to yn and tn

E(w) = −
N∑

n=1

1 + tn
2

ln
1 + yn

2
+

(
1− 1 + tn

2

)
ln

(
1− 1 + yn

2

)

= −1

2

N∑
n=1

{(1 + tn) ln(1 + yn) + (1− tn) ln(1− yn)} +N ln 2

(the last term can be dropped, since it is independent of w).

To find the activation function we apply the linear transformation to the logistic sigmoid given by
(5.19), which gives

y = 2σ(a)− 1 =
2

1 + exp(−a)
− 1

=
1− exp(−a)
1 + exp(−a)

=
exp(a/2)− exp(−a/2)
exp(a/2) + exp(−a/2)

= tanh(a/2). (hyperbolic tangent)

�

4

Question 3: Implementation of NN (using Back-Propagation)

Data : Generate a set of data points (x,y), by choosing a nonlinear function f(x) and
evaluating y = f(x) + noise for random x values, where each x is a real vector of
at least 2 elements and each y is a real scalar or vector. As an alternative, you
can use a data set you find online or are using in other research. You should
clearly state what your data set is, or how you generated it.

Here I’m using a subset of cereal dataset shared by Carnegie Mellon University (CMU). The
details of the dataset are on the following link:
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html. The objective is to predict rating of
the cereals variables such as calories, proteins, fat etc. See the range of values and behavior
of the variables in Figure 1). The data is in .csv format and can be downloaded by clicking:
cereals.

<r code> ===
path <- "~/Dropbox/KAUST/machine_learning/hw6/" # files directory
df <- read.csv(paste0(path, "cereals.csv"), header = TRUE) # loading dataset
par(mfrow = c(2, 3), mar = c(4, 4, 0, 1) + .1) # graphical definitions

plotting variables
for (i in 1:5) plot(rating ~ df[, i], xlab = names(df)[i], df)
</r code> ==

60 80 100 140

20
40

60
80

calories

ra
tin

g

1 2 3 4 5 6

20
40

60
80

protein

ra
tin

g

0 1 2 3 4 5

20
40

60
80

fat

ra
tin

g

0 50 150 250

20
40

60
80

sodium

ra
tin

g

0 2 4 6 8 10 12 14

20
40

60
80

fiber

ra
tin

g

Figure 1: relationships between the rating, y, and the x’s.

5

https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/09/07122416/cereals.csv

<r code> ===
sampling random index to separate the data in train and test

random <- sample(75, 50) # 50 values for the train dataset
train <- df[random,] ; test <- df[-random,]

applying z-score normalization
train.std <- apply(train, 2, function(x) (x - mean(x)) / sd(x))
test.std <- test
for (i in 1:6)

test.std[, i] <- (test.std[, i] - mean(train[, i])) / sd(train[, i])
</r code> ==

Task : Implement a two-layer neural network with back-propagation.
The network should have 2 or more inputs. The inputs connect to M neurons
in the hidden layer, each of which takes a weighted sum of its inputs plus a bias
and then applies the hyperbolic tangent function (as the activation function).
The network should have 1 or more outputs. Each output of the network is a
weighted sum plus bias of the outputs of the hidden layer (need no activation
function or use identity function f(x) = x for the output because this is a regres-
sion problem).
During learning, both weights and biases change to decrease the mean squared
error.

1)

Describe all the parameters you chose, including the number of inputs, outputs, and
hidden neurons, the sizes of the initial random weights, learning rate etc.

Solution/Implementation :

<r code> ===
hyperbolic tangent function

htan <- function(x) (exp(x) - exp(-x)) / (exp(x) + exp(-x))

prop.for <- function(x, w1, w2) { # forward propagation
z1 = cbind(1, x) %*% w1
h = htan(z1)
z2 = h %*% w2
list(output = z2, h = h)

}
back-propagation

backpropagate <- function(x, target, y, h, w1, w2, learn.rate) {
delta = y - target
dw1 = t(t(delta %*% t(w2) %*% (1 - crossprod(h))) %*% cbind(1, x))
dw2 = t(delta) %*% h

w1 = w1 - learn.rate * dw1

6

w2 = w2 - learn.rate * t(dw2)

list(w1 = w1, w2 = w2)
}

neural network: 10 hidden neurons, learn rate of 0.001 and 2000 iterations
neuralnet <- function(x, target, hidden = 10, learn.rate = 1e-3, iter = 2e3) {

d = ncol(x) + 1
w1 = matrix(rnorm(d * hidden), d, hidden)
w2 = as.matrix(rnorm(hidden))
error = matrix(NA, 2, iter)
for (i in 1:iter) {

pf = prop.for(x, w1, w2)
bp = backpropagate(x, target, y = pf$output, h = pf$h, w1, w2

, learn.rate = learn.rate)
w1 <- bp$w1 ; w2 <- bp$w2
error[1, i] = (1/length(target)) * sum((pf$output - target)**2)
error[2, i] = sd(abs(pf$output - target))

}
list(output = pf$output, w1 = w1, w2 = w2, error = error)

}

x <- data.matrix(train.std[, -6]) ; target <- train.std[, 6]
five inputs of size 50 plus an intercept

vector output of size 50
initial random weights generated by a normal of mean 0 and sd 1

w_{1}: matrix of dim 6 x 10, w_{2}: matrix of dim 1 x 10
nn.train <- neuralnet(x, target)
</r code> ==

�

2)

Find a learning rate that allows it to learn to a small mean squared error. Plot a
figure of how the error decreases during learning.

Solution :

The biggest learning rate that allows learning consecutive times is with 0.001.

<r code> ===
plot(nn.train$error[1,], type = "l", col = 2 # plotting the MSE

, main = paste("MSE:", round(nn.train$error[1, 2e3], 3))
, xlab = "Iteration", ylab = "MSE")

</r code> ==

7

0 500 1000 1500 2000

1
2

3
4

5
6

MSE: 0.703

Iteration

M
S

E

Figure 2: Neural Network MSE during learning.

�

3)

Test the NN you learned by a different set of data points (x,y) (different from training
set, but y is still generated by f(x) + noise), what’s the error when comparing the
predicted yn with the true target y? Give the mean and standard deviation of errors.

Solution :

<r code> ===
x <- data.matrix(test.std[, -6]) ; target <- test.std[, 6] # test dataset

five inputs of size 25 plus an intercept
vector output of size 25

testing neural network
target.test <- prop.for(x, w1 = nn.train$w1, w2 = nn.train$w2)$output

(1/length(target)) * sum((target.test - target)**2) # MSE error

[1] 0.3310582

8

mean(abs(target.test - target)) # error mean

[1] 0.4757085

sd(abs(target.test - target)) # error standard deviation

[1] 0.3303402

</r code> ==

�

4)

How will the training error and testing error be different if you re-train the NN
by different initializations of weights? And how will they change if you set M (the
number of hidden units) to be different values? Plot the error bars (as examples of
http://www.mathworks.com/help/techdoc/ref/errorbar.html) for both training and
testing.

Solution :

How will the training error and testing error be different if you re-train the NN by different
initializations of weights?
Maybe a little different, but in average very similar. Doing this we only put different start
points. The ideia of the algorithm (gradient descent) is to find the same/desired region, even
with different start points (the method is robust), if the same data is used.

And how will they change if you set M (the number of hidden units) to be different values?
Also maybe a little different, but in average very similar. Generally, a M bigger than the
number of input nodes is already good enough to reach similar results.

<r code> ===
plotting the error bars

par(mfrow = c(1, 2), mar = c(4, 4, 2, 1) + .1) # graphical definitions

plot(nn.train$error[1,], type = "l", col = 2 # plotting the training MSE
, main = "Training", xlab = "Iteration", ylab = "MSE", ylim = c(.25, 6.65))

xs <- seq(250, 2000, 250) ; ys <- nn.train$error[1, xs]
arrows(xs, ys - nn.train$error[2, xs], xs, ys + nn.train$error[2, xs] # error bars

, length = .05, angle = 90, code = 3, col = 2)

plotting the testing error/error bar

9

error.mean <- mean(abs(target.test - target))
error.sd <- sd(abs(target.test - target))

plot(error.mean, pch = 19, col = 2, ylim = c(.1, .85), axes = FALSE
, xlab = NA, ylab = "Error", main = "Test")

Axis(side = 2, at = seq(.1, .85, length.out = 4))
arrows(1, error.mean - error.sd, 1, error.mean + error.sd

, length = .05, angle = 90, code = 3, col = 2)
</r code> ==

0 500 1000 1500 2000

0
1

2
3

4
5

6

Training

Iteration

M
S

E

Test

E
rr

or

0.
10

0.
35

0.
60

0.
85

Figure 3: Left: Error bars (plus/minus standard deviation of errors at different iterations) for the
MSE in the training. Right: Error mean with standard deviation error bar for the test.

�

An Additional Exercise
(a bonus for those who still have time,

energy and interest to work)

Implement the momentum discussed in class.
Run it and see if it learns faster, or learns a better solution (in terms of testing er-
ror). Describe whether it improved speed, accuracy, or both, and why you think that
occurred. (It’s OK if you discover your “improvement” had no effect or even made it

10

worse. The important thing is to test it and explain the results).

Solution:
�

11

	Question 1
	(1)
	(2)

	Question 2
	Question 3
	1)
	2)
	3)
	4)

	An Additional Exercise

