CS 229 - MACHINE LEARNING
Xiangliang Zhang
Computer Science (CS)/Statistics (STAT) Program
Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) Division
King Abdullah University of Science and Technology (KAUST)

HOMEWORK
[11

Henrique Aparecido Laureano

Spring Semester 2018

Contents
Question 1
Question 2

Implementation Task
Task . . . o e

Question 1

Show the derivation of negative log-likelihood of logistic regression problem.

N
NLL(w) = — > [t In g + (1 —) In(1 — ;)

=1

Solution:
Target variable t € {0, 1}:
p(t|x, w) = Bernoulli(t|u(z)),
with p(z) representing the parameter of the Bernoulli distribution p(t = 1|z).

1
p(z) = sigm(w' z) = T+ exp{—wT 2] = p(tlr,w) = Bernoulli(t|sigm(w ' z)).

N

Likelihood function = product of Bernoulli’s = H pli (1 —)t
i=1
N
Negative Log-Likelihood (NLL) = — Z [ti Inp; +(1—1¢;)In(l — ,uz)]

=1

Derivative of NLL on w:

dNLL(w):_iV: to, i1 %:_i t— 1 dui:i i —t] du
dw ~_ i | dw :uz(l ,uz) dw i=1 ;uz(l_:ul) dw’

i—1 LM 1= p i=1
with
. 1 o T)1
S _dlredlw DTy explowad) P esp{-uwTn) ()
B exp{—w '}
a (1 + exp{—wTx;})?
1 1
= 1-— x
1+ exp{—wTwz;} (1+ eXp{—le"i})
= pi(1 — pi) ;.
Then,
ANLL(w) = pi —t; -
- 7 1 - Mg T tz 7
- ;m(l— il =) ;(u)z

Question 2

Show how to maximize NLL(w) and find w* by gradient descent. Or other difference
solutions (you can get a bonus of 20 points if you find a different solution)

Solution:

We already have the gradient of NLL(w) by the Question 1:
N
dNLL
dNLL (w) — Z(“i — ;)

dw ,
=1

We want maximize the negative log-likelihood (NLL), so we need to find the minimum of the
function (in the best scenario, the unique global minimum).

The Hessian of NLL(w) is given by:

d®NLL(w) _ d3, (s — ti)i

H— -
dw? dw

*d
= Z a z] (we calculated this in Question 1)

v
- St

il — i) - 0
=X'SX, with S= .
0 (L —).

i is all positive. Therefore, H is positive definite.
Thus (NLL) is convex, and has a unique global minimum.

The gradient descent algorithm is given by searching w* by

N
Wt =P — gk, with ¢f= ———~ = Z(,ul — t;)x;
i=1
Other solution for the task of find w* is the use IRLS (Iteratively Reweighted Least Squares),
a special case of Newton’s algorithm.

IRLS uses the second derivative and has the form

N
Wt = wh — H gk with ¢F = Z(m —t)z; and H=X"S"X.

Implementation Task

Data:
Please download data logreg_data_binary.txt. It includes four columns.
The first column coded the target variable of "apply to graduate school", unlikely
(0), or likely (1).
The other three columns are three variables as follows:

1. parent, which is a 0/1 variable indicating whether at least one parent has a
graduate degree,

2. public, which is a 0/1 variable where 1 indicates that the undergraduate
institution is a public university and 0 indicates that it is a private university,

3. gpa, which is the student’s grade point average.

path <- "7/Dropbox/KAUST/machine_learning/hw3/"
train <- read.table(pasteO(path, "logreg data_binary.txt"))
names (train) <- c("target", "parent", "public", "gpa")

In other words, each undergraduate student is described by x, which is a 3-dim
vector. Can we make a prediction of his/her target t =7

Learning method:
You can use gradient descent.

NOTE:

1. Data should be standardized, e.g., for one variable r using ' = (z—mean(z))/std(z)
so that 2" has mean(z') = 0 and std(z') = 1.
Standardization should be down for all three variables.

std.train <- train
for (i in 2:4)
std.train[, i] <- (std.train[, i] - mean(train[, i])) / sd(train[, il)

The testing data should be standardized by the mean and std obtained from
the variable values in training data.

test <- read.table(pasteO(path, "test_data_binary.txt"))
names (test) <- c("target", "parent", "public", '"gpa")
std.test <- test
for (i in 2:4)
std.test[, i] <- (std.test[, i] - mean(train[, il)) / sd(train[, il)

2. One more dimension with value 1 should be added to each example.

<r code> === }
adding one more dimension with value 1 to train and test datasets

X.stdtrain <- as.matrix(cbind(intercept = 1, std.train[, 2:4]))
Xx.stdtest <- as.matrix(cbind(intercept = 1, std.test[, 2:4]))
</I‘ code> == }

Task: Logistic Regression with Binary target

Implement the logistic regression algorithm for this binary classification problem.

Solution:
<r code> ============== ==
gd <- function(x, target) { # gd: gradient descent
W = w.new = matrix(numeric(4)) # coefficient matrix, dimension 4 x 1
eta = .1 # costant
nll = numeric(1) # object to keep the nll values at each iteration
n = length(target) # sample size
for (i in 1:500) { # fixing the number of iterations in 500
mu =1/ 1+ exp(-x %*% w)) # computing \mu
grad = (1 / n) * t(mu - target) %*) x # computing the gradient
w.new = t(w) - eta * grad # computing the new values of the coefficients w
mu.new = 1 / (1 + exp(-x %*% t(w.new))) # computing \mu with the new w
computing and keeping the nll (negative log-likelihood) at each iteration
nll1[i] = - sum(target * log(mu.new) + (1 - target) * log(l - mu.new))
convergence criterion: diference in w between iterations smaller than 0.0001
if (1 > 2) if (all(abs(w.new - t(w)) < le-4)) break
w = t(w.new) # the new w became the older w
} # returning the estimate w, the number of iterations and nll values
return(list(w = w.new, i = i, nll = nll))
} # Gradient Descent for the Logistic Regression
gd.1lr <- gd(x = x.stdtrain, target = std.train[, 1])
</r code> ==
U

1)

Show the decreasing of NLL (negative log-likelihood) function with the increasing of
iteration numbers.

Solution:

<r code> ==—============================= }

par(mar = c(4, 4, 3, 1) + .1) # graphical definitions
plot(gd.lr$nll, type = "1", lwd = 3, col = "#0080ff" # plotting the nll values
, Xxlab = "Iterations", ylab = "NLL"
, main = paste0("Minimum NLL: ", round(min(gd.lr$nll), 5)

, ", at iteration ", gd.lr$i
, "\ngiven a convergence criterion of 0.0001"))
</r code> ==

Minimum NLL: 53.08868, at iteration 368
given a convergence criterion of 0.0001

65

NLL
60
l

55
I

0 100 200 300
Iterations
OJ

2)
Give the results of obtained coefficient, w.
Solution:

<r code> ================ e

gd.lr$w # obtained coefficients, w

</T code> ==================mmmmmmmmeommmee o mmmme oo s e s

intercept parent public gpa
[1,] -0.7952539 0.4605697 0.243584 0.8039067

3)

<r code> ================ == }#
function to compute \mu, the sigmoid function
mu <- function(x, w) 1 / (1 + exp(-x %*% t(w)))
mu.train <- mu(x = x.stdtrain, w = gd.lr$w) # computing mu for the train dataset
par(mar = c(4, 4, 1, 1) + .1) # graphical definitions
plot(sort(mu.train) ~ sort(std.train[, 4]) # plotting the estimated curve
, col =2, ylim = ¢(0, 1), xlab = "gpa", ylab = expression(mu))
plotting corresponding target points
points(target ~ gpa, std.train, pch = 8, col = "#0080ff")

</r code> ==
S - Sk BRI Sk
©)
O
o0}
o | §§
)
© @]
<
3
<
g
N
o
o g
o_% -
I I I I I I
-3 -2 - 0 1 2

Download test data at test_data_binary.txt. How many target labels of test data are
correctly predicted by the learned w?

Solution:
<r code> ===
mu.test <- mu(x = x.stdtest, w = gd.lr$w) # computing mu for the test dataset

if \mu > 0.5 => target = 1, else => target = 0
target.pred <- ifelse(mu.test > .5, 1, 0)
comparing the predicted labels with the real labels

table(target.pred == std.test[, 1])

</r code> ===============

FALSE TRUE
21 49

= 49 of 70 are predicted correctly. Hit rate: 70%

correct.

<r code> ============

par(mar = c(4, 4, 1, 1) + .1)

plot(sort(mu.test) ~ sort(std.test[,

41)

graphical definitions
plotting the estimated curve

, col = 2, ylim = ¢(0, 1), xlab = "gpa", ylab = expression(mu))
plotting corresponding target points
= "#0080ff")

points(target

gpa, std.test, pch = 8, col

</r code> =============

0.8

0.4

0.2

0.0

* kK

WRK ok SHik K

gpa

