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Question 1

Show the derivation of negative log-likelihood of logistic regression problem.
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Solution:
Target variable t € {0, 1}:
p(t|x, w) = Bernoulli(t|u(z)),
with p(z) representing the parameter of the Bernoulli distribution p(t = 1|z).

1
p(z) = sigm(w' z) = T+ exp{—wT 2] = p(tlr,w) = Bernoulli(t|sigm(w ' z)).
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Derivative of NLL on w:
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Question 2

Show how to maximize NLL(w) and find w* by gradient descent. Or other difference
solutions (you can get a bonus of 20 points if you find a different solution)

Solution:

We already have the gradient of NLL(w) by the Question 1:
N
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dw ,
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We want maximize the negative log-likelihood (NLL), so we need to find the minimum of the
function (in the best scenario, the unique global minimum).

The Hessian of NLL(w) is given by:
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i is all positive. Therefore, H is positive definite.
Thus (NLL) is convex, and has a unique global minimum.

The gradient descent algorithm is given by searching w* by

N
Wt =P — gk, with ¢f= ———~ = Z(,ul — t;)x;
i=1
Other solution for the task of find w* is the use IRLS (Iteratively Reweighted Least Squares),
a special case of Newton’s algorithm.

IRLS uses the second derivative and has the form

N
Wt = wh — H gk with  ¢F = Z(m —t)z; and H=X"S"X.



Implementation Task

Data:
Please download data logreg_data_binary.txt. It includes four columns.
The first column coded the target variable of "apply to graduate school", unlikely
(0), or likely (1).
The other three columns are three variables as follows:

1. parent, which is a 0/1 variable indicating whether at least one parent has a
graduate degree,

2. public, which is a 0/1 variable where 1 indicates that the undergraduate
institution is a public university and 0 indicates that it is a private university,

3. gpa, which is the student’s grade point average.

path <- "7/Dropbox/KAUST/machine_learning/hw3/"
train <- read.table(pasteO(path, "logreg data_binary.txt"))
names (train) <- c("target", "parent", "public", "gpa")

In other words, each undergraduate student is described by x, which is a 3-dim
vector. Can we make a prediction of his/her target t =7

Learning method:
You can use gradient descent.

NOTE:

1. Data should be standardized, e.g., for one variable r using ' = (z—mean(z))/std(z)
so that 2" has mean(z') = 0 and std(z') = 1.
Standardization should be down for all three variables.

std.train <- train
for (i in 2:4)
std.train[ , i] <- (std.train[ , i] - mean(train[ , i])) / sd(train[ , il)

The testing data should be standardized by the mean and std obtained from
the variable values in training data.

test <- read.table(pasteO(path, "test_data_binary.txt"))
names (test) <- c("target", "parent", "public", '"gpa")
std.test <- test
for (i in 2:4)
std.test[ , i] <- (std.test[ , i] - mean(train[ , il)) / sd(train[ , il)



2. One more dimension with value 1 should be added to each example.

# <r code> ===================================================================== }
# adding one more dimension with value 1 to train and test datasets

X.stdtrain <- as.matrix(cbind(intercept = 1, std.train[ , 2:4]))
Xx.stdtest <- as.matrix(cbind(intercept = 1, std.test[ , 2:4]))
# </I‘ code> ==================================================================== }

Task: Logistic Regression with Binary target

Implement the logistic regression algorithm for this binary classification problem.

Solution:
# <r code> ============== ========================================
gd <- function(x, target) { # gd: gradient descent
W = w.new = matrix(numeric(4)) # coefficient matrix, dimension 4 x 1
eta = .1 # costant
nll = numeric(1) # object to keep the nll values at each iteration
n = length(target) # sample size
for (i in 1:500) { # fixing the number of iterations in 500
mu =1/ 1+ exp(-x %*% w) ) # computing \mu
grad = (1 / n) * t(mu - target) %*) x # computing the gradient
w.new = t(w) - eta * grad # computing the new values of the coefficients w
mu.new = 1 / (1 + exp(-x %*% t(w.new)) ) # computing \mu with the new w
# computing and keeping the nll (negative log-likelihood) at each iteration
nll1[i] = - sum( target * log(mu.new) + (1 - target) * log(l - mu.new) )
# convergence criterion: diference in w between iterations smaller than 0.0001
if (1 > 2) if (all( abs(w.new - t(w)) < le-4 )) break
w = t(w.new) # the new w became the older w
} # returning the estimate w, the number of iterations and nll values
return(list(w = w.new, i = i, nll = nll))
} # Gradient Descent for the Logistic Regression
gd.1lr <- gd(x = x.stdtrain, target = std.train[ , 1])
# </r code> ====================================================================
U

1)

Show the decreasing of NLL (negative log-likelihood) function with the increasing of
iteration numbers.

Solution:



# <r code> ========================================—============================= }

par(mar = c(4, 4, 3, 1) + .1) # graphical definitions
plot(gd.lr$nll, type = "1", lwd = 3, col = "#0080ff" # plotting the nll values
, Xxlab = "Iterations", ylab = "NLL"
, main = paste0("Minimum NLL: ", round(min(gd.lr$nll), 5)

, ", at iteration ", gd.lr$i
, "\ngiven a convergence criterion of 0.0001"))
# </r code> ==================================================================== #

Minimum NLL: 53.08868, at iteration 368
given a convergence criterion of 0.0001

65

NLL
60
l

55
I

0 100 200 300
Iterations
OJ

2)
Give the results of obtained coefficient, w.
Solution:

# <r code> ================ e #

gd.lr$w # obtained coefficients, w

# </T code> ==================mmmmmmmmeommmee o mmmme oo s e s #

intercept parent  public gpa
[1,] -0.7952539 0.4605697 0.243584 0.8039067



3)

# <r code> ================ ======================================== }#
# function to compute \mu, the sigmoid function
mu <- function(x, w) 1 / (1 + exp(-x %*% t(w)) )
mu.train <- mu(x = x.stdtrain, w = gd.lr$w) # computing mu for the train dataset
par(mar = c(4, 4, 1, 1) + .1) # graphical definitions
plot(sort(mu.train) ~ sort(std.train[ , 4]) # plotting the estimated curve
, col =2, ylim = ¢(0, 1), xlab = "gpa", ylab = expression(mu))
# plotting corresponding target points
points(target ~ gpa, std.train, pch = 8, col = "#0080ff")

# </r code> ==================================================================== #
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Download test data at test_data_binary.txt. How many target labels of test data are
correctly predicted by the learned w?

Solution:
# <r code> ===================================================================== #
mu.test <- mu(x = x.stdtest, w = gd.lr$w) # computing mu for the test dataset

# if \mu > 0.5 => target = 1, else => target = 0
target.pred <- ifelse(mu.test > .5, 1, 0)
# comparing the predicted labels with the real labels



table(target.pred == std.test[ , 1])

# </r code> ===============

FALSE TRUE
21 49

= 49 of 70 are predicted correctly. Hit rate: 70%

correct.

# <r code> ============

par(mar = c(4, 4, 1, 1) + .1)

plot(sort(mu.test) ~ sort(std.test[ ,

41)

# graphical definitions
# plotting the estimated curve

, col = 2, ylim = ¢(0, 1), xlab = "gpa", ylab = expression(mu))
# plotting corresponding target points
= "#0080ff")

points(target

gpa, std.test, pch = 8, col

# </r code> =============
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