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Abstract
Diabetic Retinopathy (DR) is the most common diabetic eye disease and is the leading cause of new
blindness among the diabetes patients. The exact technique by which diabetes causes this condition
is unclear, and it can develop without any serious symptoms. Therefore, the early detection of this
disease is crucial. This paper focuses on the analysis of the retina in the diabetes patients via a logistic
linear regression model. Moreover, it aims to test, quantity and interpret the variables significance at
the differentiation of the patient status (diabetic retinopathy signs disease or not). Test the accuracy
of the prediction by using this methodology with different link functions was also a goal of this paper.
The data was taken from UCI repository [1], it contains features extracted from the Messidor (Methods
to evaluate segmentation and indexing techniques in the field of retinal ophthalmology) image set to
predict whether an image contains signs of diabetic retinopathy or not. In a exploratory analysis we saw
that practically all the data (99.7%) present a sufficient quality assessment and that more than 90%
of the patients present a Severe Retinal Abnormality (SRA). Looking marginally to the means among
the groups (patients with and without signs of DR) of the features (1) Euclidian distance of the center
of the macula to the center of the optic disc and (2) the diameter of the optic disc, we saw through a
t-test that their means don’t differ significantly, being in reality very closer. With a χ2-test we saw no
relation between this desease status with an AM/FM-based classification. Fitting a logistic regression
with all the features the same result was obtained. The logistic link function presented the better results
when compared with others. The goodness of fit was satisfactory, having almost all features related
with Microaneurism Detection (MD) and Exudates detection as significant. A predicitive model was
also trained and good results was obtained, as a AUC of 0.798, a sensitivity of 0.805 and a specificity
of 0.686.
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1. Introduction

1.1 Background

Diabetes is a disease in which the ability of the body to produce and respond to the hormone insulin is impaired. A
number of medical risks are associated with diabetes and many of them stem from damage to the tiny blood vessels
in the eyes, called Diabetic Retinopathy (DR) [2]. DR is a condition that happens when the high blood sugar levels
cause damage to the blood vessels in the retina that lines the back of the eye [3]. These blood vessels can swell or
close and stopping the blood from passing through. And in the most advanced stage, the new abnormal blood vessels
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grow on the retina, which can lead to a potential of severe vision loss and blindness to the people with diabetes [4].
The aforementioned features of this condition show up in fundoscopy images in Figure 1.

The number of patients with diabetic retinopathy nowadays increased very rapidly [4], and the complications
associated with the long duration of the disease becomes one of the challenges that faced the health care system.
During the development of DR, the patients may not notice any changes in their vision, and the DR might be very
advanced by the time that patients have visual complaints and experience visual loss eventually [5]. So, to detect DR
in an early stage, people with diabetes should get a dilated eye exam at least once a year, thus in case of an early
diagnosis, the progression of DR can be reduced by an appropriate therapy. That’s mean the early detection, timely
treatment, and appropriate follow-up care of diabetic eye disease can protect the people with diabetic against vision
loss.

Figure 1. Retinal Fundus image.

Automatic Computer-Aided diagnosis system of retinal images is an important field that assist doctors in the
interpretation of medical images and to easily check the state of the patient eyes. This type of system uses a wide
ranges of data analysis and machine learning techniques to automatically diagnose the vessels, optic disk, and bright
lesions, as well as to assess the image quality of the eyes [6].

This paper aims to use statistical techniques to understand which features are related with the response variable
(presence or not of signs of DR) and try to predict these responses.

1.2 Dataset Description

The Diabetic Retinopathy Dataset was taken from the UCI repository website [1].

1.2.1 Dataset Information

This dataset contains features extracted from the Messidor image set and aims to predict whether a particular image
contains signs of diabetic retinopathy or not. All the variables represent either a detected lesion, a characteristic
feature of an anatomical part or an image-level descriptor.

1.2.2 Dataset Characteristics

The dataset characteristics are shown in Table 1.
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Table 1. Dataset characteristics.

Number of instances: 1151 Number of attributes: 20
Attributes characteristics: Integer, Real Area: Life
Data denoted: 03-11-2014 Associated tasks: Classification
Missing values: No Number of Web Hits: 29802

1.2.3 Attribute Information

The attributes data view of each records are shown in Table 2.

Table 2. Description of Diabetic Retinopathy Dataset.

Feature Description

Quality assessment Binary result (0 = Bad quality, 1 = Sufficient quality)

Pre-screening Binary result (0 = Lack of SRA, 1 = Severe Retinal Abnormality (SRA))

MD (six features, 0.5 to 1)
Numeric. The results of Microaneurism Detection (MD). Each feature
value stand for the number of microaneurisms found at the confidence
level α = 0.5, 0.6, 0.7, 0.8, 0.9 and 1

Exudates detection 1 to 8

Numeric. Number of points in the results of exudates detection in different
set of points. The values are normalized by dividing the number of lesions
with the diameter of the ROI (Region of Interest) to compensate different
image sizes

Euclidian distance
Numeric. The euclidean distance of the center of the macula to the center
of the optic disc to provide important information regarding the patients
condition. The values are normalized with the diameter of the ROI

Diameter Numeric. Diameter of the optic disc

AM/FM-based classification
Binary result of the multiscale AM/FM
(Amplitude-Modulation/Frequency-Modulation) - based classification
(0 = Normal retinal structures, 1 = pathological lesions)

1.3 Scientific Goals and Primary Questions of Interest

The number of patient with DR increased rapidly, and the exact technique by which diabetes causes this disease
remains unclear. In addition to that, DR can develop without any severe symptoms. Therefore, there is a high need
to improve the methods that can diagnose DR as soon as possible because the early detection and treatment can
reduce the risk of blindness by 95%[4]. The project provide a selection and a study of the variables which have a
significant impact on the diabetic retinopathy. Knowing these relationships better, the patient can receive an early
treatment that can limit the potential for significant vision loss.

The principal goal of this study was to check which variables have a difference statically significant between the
two levels of the response variable, i.e., between patients without signs of DR, and with signs of DR. Besides verify
which variables, we aim to quantify and interpret this difference. Another goal of this study was to check which
variables are statistically significant to predict if the patient has or hasn’t signs of DR.



Analysis of Diabetic Retinopathy Data via Logistic Regression — 4/18

2. Statistical Methods

2.1 Preliminary Data Exploration

From the 1151 patients in the study, 611 (53%) present signs of DR. The three categorical features presented in
the dataset are shown in the Figure 2. Practically all the patients (99.7%) have a sufficient quality assessment and
more than 90% present a Severe Retinal Abnormality (SRA). Given this disproportionality, this two features will not
be used in the statistical analysis. Also in Figure 2 we see that 1/3 of the patients present a positive result AM/FM
classification, i.e., 33.6% of the patients present pathological lesions in the retinal structures. A summary with the
mean, median and standard deviation for all the numerical variables are presented in Table 3.

Quality assessment

Bad Sufficient

0.3%

99.7%

Severe Retinal Abnormality

No Yes

8.2%

91.8%

AM/FM−based classification

Negative Positive

66.4%

33.6%

Figure 2. Barcharts for the three categorical features: status of quality assessment (left), presence of severe retinal
abnormality (center) and result of an AM/FM-based classification (right).

Table 3. Summary of the numerical variables in the Diabetic Retinopathy Dataset. Mean, median and standard deviation are
presented divided by the presense, or not, of signs of DR. Between the MD and exudates features, the biggest and smallest

values are in bold, for easy identification.

Feature Mean Median Standard deviation

No sign of DR Sign of DR No sign of DR Sign of DR No sign of DR Sign of DR

MD: 0.5 30.457 45.473 25.000 44.000 20.743 27.411
MD: 0.6 30.083 42.943 25.000 42.000 20.473 25.444
MD: 0.7 29.450 40.170 24.000 39.000 20.183 23.802
MD: 0.8 27.863 36.216 22.000 34.000 19.321 21.860
MD: 0.9 25.394 31.710 20.000 29.000 18.317 20.058
MD: 1 19.098 22.966 15.000 20.000 14.257 15.598
EXU 1 60.489 67.285 47.577 40.526 50.765 64.418
EXU 2 23.077 23.098 18.988 15.297 19.719 23.156
EXU 3 8.234 9.121 4.576 4.368 10.565 12.380
EXU 4 1.402 2.221 0.435 0.575 2.794 4.670
EXU 5 0.185 0.893 0.011 0.051 0.555 3.335
EXU 6 0.042 0.363 0.000 0.004 0.156 1.427
EXU 7 0.007 0.155 0.000 0.000 0.035 0.537
EXU 8 0.003 0.067 0.000 0.000 0.016 0.241
EUC 0.523 0.523 0.523 0.523 0.029 0.028
DIAM 0.109 0.108 0.107 0.106 0.018 0.018
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In the MD measures the biggest mean, median and standard deviations are observed in the patients without signs
of DR, for all the confidence levels. We see that conform the confidence level became bigger all the three statistics
became smaller with a considerable drop. For the patients without signs of DR, comparing the measures of the 0.5
level with the 1 level the mean decay 37%, the median decay 40% and the standard deviation decay 31%. Already
for this patients with signs of DR, the mean decay 49%, the median decay 55% and the standard deviation decay
43%. Similar behavior is seen with the exudates detection measures. Comparing the measures of 1 point with 8
points, the mean falls to practically 0. Only by doubling the number of points, 1 to 2, the mean and the median decay
more than 50%, independent if the patient present or not signs of DR. Patients with no signs of DR present bigger
mean and standard deviations than the patients with signs of DR, for all number of set of points. For bigger set of
points, the opposity behavior is seen with the medians. Also in Table 3, we see that for the euclidean distance of the
center of the macula to the center of the optic disc and for the diameter of the optic disc extremally similar values
are absorved in the three statistics, for both groups (patients with and without signs of DR).

A 2x2 scatter plots and the correlations for all the numerical variables is provided in Figure 4. For the MD
features we see a clear linear relationship. The linear relationship looks more stronger for the patients in blue,
without signs of DR. In the left-graph of the Figure 3 we can see better the correlations between the confidence
levels of the MD features. The detections are correlated in all confidence levels, with a minimum correlation of 0.86
(between the most far levels). Closer confidence levels are extremely correlated (superior a 0.95). Thus, we see here
a pattern. The further away the confidence levels, the lower is the correlation.

MD detection correlation by confidence levels
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Figure 3. Correlations between the different confidence levels of the MD detection, in the left. In the right, correlations
between the different numbers (#) of set of points of the exudates detection.

In the scatter plots for the exudates detection by several sets of points, in Figure 4, a linear relationship is
observed only for very close numbers of the set of points. Conform the difference between this numbers became
larger, the linear behavior disappears, and the correlation goes to less than 0.4 (right-graph of Figure 3). We also see
in the scatterplots that, in general, exist much more variability among the values of the patients with signs of DR (in
orange). Comparing the euclidian distance and the diameter features with the others, none evident stronger relation
is observed.

2.2 Modeling Process & Methodology

Before study the effect of all the variables together with the goal of seeing which features are significant to explain
the signs of DR and to predict this signs, in the presence of the others, we looked for some of the features individually.
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To verify if their means are different from one response group (signs of DR or not) to the other, we used a t-test.

MD:0.5 1.00 0.99 0.96 0.93 0.86 0.23 0.10 0.045 0.10 0.13 0.14 0.20 0.21 1.3e−06 0.034

MD:0.6 0.99 0.98 0.94 0.88 0.24 0.12 0.058 0.086 0.12 0.12 0.17 0.19 0.002 0.035

MD:0.7 0.99 0.97 0.92 0.28 0.14 0.087 0.058 0.095 0.099 0.14 0.16 0.00039 0.03

MD:0.8 0.99 0.95 0.31 0.16 0.11 0.03 0.067 0.07 0.10 0.12 0.0015 0.017

MD:0.9 0.97 0.35 0.20 0.15 0.02 0.022 0.025 0.051 0.071 0.0017 0.011

MD:1 0.38 0.22 0.18 0.058 0.012 0.012 0.0069 0.032 0.0026 0.012

EXU1 0.77 0.76 0.49 0.16 0.13 0.11 0.085 0.086 0.086

EXU2 0.92 0.62 0.26 0.22 0.18 0.14 0.13 0.091

EXU3 0.78 0.38 0.33 0.27 0.21 0.13 0.099

EXU4 0.83 0.76 0.64 0.52 0.17 0.091

EXU5 0.93 0.77 0.63 0.15 0.059

EXU6 0.91 0.78 0.15 0.06

EXU7 0.94 0.12 0.04

EXU8 0.097 0.019

EUC 0.13

DIAM

Figure 4. Scatter plots and correlations for all numeric features. In blue the pacients without signs of diabetic retinopathy
(DR), in orange the pacients with signs of DR.

The formula of the t-test statistic is described in the Equation 1, with W being a weight (the sample size of one
group divided by the total sample size) for the sample size and with S2 being the estimated sample variance among
each group.

test =
X̄No− X̄Yes√

S2
p ·
(

1
nNo

+ 1
nYes

) , with S2
p =WNo ·S2

No +WYes ·S2
Yes. (1)

The test statistic test follow (∼) a t-distribution with n = nNo +nYes degrees of freedom.
To test the association between variables we use the χ2-test, with it formula is described in Equation 2.
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χ
2
est =

n

∑
i=1

(Oi−Ei)
2

Ei
, with i being the intersection classes of the variables. (2)

For each intersection of the classes of the variables we have the observed counts, expressed by O, and the expected
counts expressed by E. The expected counts can be computed as the product of the marginal totals divided by the
total overall. The test statistic χ2

est follow (∼) a χ2 distribution with (number of classes in the first variable - 1) ·
(number of classes in the second variable - 1) degrees of freedom.

To verify the significance of one feature in the presence of others we used the logistic regression model. The
logistic regression is the most famous and used model in medicine and epidemiology, and the reason for this is
because this methodology combines simplicity, power and interpretation. Simplicity because isn’t a very complex
model, powerful because this model is able to provide very good results in a general way and their parameter
interpretation can be given in terms of odds ratio. The logistic regression [7] can be understood as finding the values
of the β parameters that best fit Y |X ∼ Bernoulli distributed, with expectation:

E(Y |X = x) = P(Y = 1|X = x) =
exp(β0 +β1x)

1+ exp(β0 +β1x)
.

The logistic function is defined by:

F(x) =
1

1+ exp(−(β0 +β1x))
.

The inverse of the logistic function, g, also called of logit (log odds) is defined by:

g(F(x)) = ln
(

F(x)
1−F(x)

)
= β0 +β1x ⇒ F(x)

1−F(x)
= exp(β0 +β1x) = OR.

Where:

• g is the logit function. The equation for g(F(x)) illustrates that the logit (i.e., the log-odds) is equivalent to the
linear regression expression.

• F(x) is the probability that the response variable equals a case, given some linear combination of the predictors.
This is important in that it shows that the value of the linear regression expression can vary from negative to
positive infinity and yet, after transformation, the resulting expression for the probability F(x) ranges between
0 and 1.

• β0 is the intercept from the linear regression equation (the value of the criterion when the predictor is equal to
zero).

• β1x is the regression coefficient multiplied by some value of the feature.

The terms interpretation can be done by odds ratio (OR).
In the context of generalized linear models for binary data, the logit is the canonical link function and when used the
resulting model is called of logistic regression. However, other link function can be used [7] and [8]. These link
functions are:
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• Probit or inverse Normal function: g(F(x)) = Φ−1(F(x)).

• Complementary log-log function: g(F(x)) = log(− log(1−F(x))).

• Cauchit function: tan
(
πF(x)− π

2

)
.

To estimate the model we used maximum likelihood. To test the significance of the coefficients we used the
Akaike information criterion (AIC). Given a collection of models, AIC estimates the quality of each model, relative
to each of the other models. Thus, AIC provides a means for model selection. The AIC value of a given model is the
following:

AIC = 2p−2log L̂.

With L̂ being the maximum value of the likelihood function for the model and p being the number of estimated
parameters in the model. More details about this technique can be seen in [9].

Thinking in the classification, we separate the data into two parts. One for training the model and other for test.
In general between 60 ∼ 70% of the data are separeted for the train, and the rest stays for the test.

Looking to the Figures 3 and 4 and thinking in the nature of the data, we see a correlation between the MD
variables and the EXU variables. When we have this type of characteristic a famous alternative is the use of principal
component analysis (PCA). PCA uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called principal components. The number of
distinct principal components is equal to the smaller of the number of original variables or the number of observations
minus one. This transformation is defined in such a way that the first principal component has the largest possible
variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in
turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The
resulting vectors are an uncorrelated orthogonal basis set [10].

To do all the fits and computation we used the R language [11].

2.3 Diagnosis & Goodness of Fit

Under the null hypothesis that the model fit is satisfactory, to verify the goodness of fit we used statistics that
summarise the concordance among the observed values and the predicted values by the model. In the presence of
continuous features, the most popular statistic is the test of Hosmer and Lemeshow [12] and [13]. Beyond this we
also used the Pearson and Deviance residuals, the sensitivity, specificity, predict value and the ROC curve [14] and
[15].

3. Results

As a first step we looked marginally to the two continuous variables that aren’t strictly related to the others. We are
talking about the (1) euclidian distance of the center of the macula to the center of the optic disc and (2) the diameter
of the optic disc. To verify if we have evidence of the difference between the means of each one of these variables
in relation to the presence (or not) of signs of DR we used a t-test. We tested a null hypothesis HNull of equality,
i.e., that the difference of the means isn’t statistically significant, versus an alternative hypothesis HAlt of significant
difference. In the Tables 4 and 5 we present the results of the t-test for the two variables.

Table 4. Summary of the t-test results to the euclidian distance, by sign of DR.

Sign of DR Mean:
Euclidian distance t-stastistic Reference

distribution Decision

No
Yes

0.52296
0.52344

-0.28699 1.64618
No statistical evidence of
diferrence between the means
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We see that for both variables the means are extremely similar in each group (presence or not of signs of DR),
and in consequence the reference distribution is bigger than the test statistic in both cases, which means that we
don’t have enough evidence to reject the null hypothesis.

Table 5. Summary of the t-test results to the diameter, by sign of DR.

Sign of DR Mean: Diameter t-stastistic Reference
distribution Decision

No
Yes

0.10902
0.10791

1.04682 1.64618
No statistical evidence of
diferrence between the means

Thinking in a regression model with several variables, with this result we can already expect that this two
variables, (1) euclidian distance of the center of the macula and the center to the optic disc and (2) the diameter of
the optic disc will not be significant to separate the patients between the two groups.

In Figure 2 we saw that using the AM/FM classification 1/3 of the patients present pathological lesions in the
retinal structures. In Table 6 we compared the AM/FM classification of the patients with the DR classification.

Among the patients with no signs of DR, 36% (193/540) presented pathological lesions in the retinal structures.
Among the patients with signs of DR, 68% presented normal retinal structures. In the cells between parentheses
we have the expected counts, where we see a small difference to the observed counts. Performing a χ2-test we
obtained a test statistic of 2.044. For a probability of Type I error of α = 0.05 with 1 degree of freedom, the
rejection region is determined by the value 3.841, which is bigger than the value of the test statistic. Therefore, we
don’t have significant statistical evidence to reject a null hyphotesis of lack of association between the result of the
AM/FM-based classification and the patient status (with or without signs of DR).

Table 6. Comparison of the AM/FM-based classification with the DR situation of the patients, by the observed counts of
patients. In parentheses are presented the respective expected counts.

AM/FM-based classification No sign of DR Sign of DR Total

Normal retinal structures 347 (358) 417 (406) 764

Pathological lesions 193 (182) 194 (205) 387

Total 540 611 1151

To see and understand the behavior of the features in the patients status, we fitted a logistic regression (with
logit link function). We start with all features and using as criterium the AIC we arrived in a final model wehre the
results can be seen in Table 7. To find the CI we used the follow approach: estimated coefficient ± standard normal
distribution 95% quantil times (·) coefficient standard error.

Looking to the results of this first model, presented in Table 7, we see in the p-value column that for the MD
features only the values for the 0.9 confidence level weren’t significant (for this reason aren’t present in the Table),
considering a significance level of 10%. For the exudates detection features only two wasn’t significant, with three
and eight set of points. As we already expected by the results in the Tables 4 and 5, the euclidian distance and the
diameter not shown to be significant. Considering a significance level of 10%, the AM/FM-based classification
shown to be significant.

To see the significance we don’t need to look exclusively to the p-value, we can also look to the confidence
intervals (CI). If the interval contain the value zero it’s a clue that the variable may be not significant. The interval
range is also very informative. If it’s big, the uncertainty about the coeficient is greater.

With the variables present in this final model obtained with a logit link function we fitted more three models with
different link functions. This models are compared by the AIC in Table 8. The better fit is obtained with the logit
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link function, this means that we stay with the fitted logistic regression with the estimated coefficients presented in
Table 7.

Table 7. Summary of the final fitted logistic regression with the estimated coefficients, lower and upper of the 95% confidence
interval (CI) and related p-values. In bold, for easy identification, are the significant coefficients at a level of 5% and the CI’s

that don’t include zero.

Features Lower CI Point estimate Upper CI p-value

Intercept -1.46297 -0.44403 0.57490 0.39304
MD: 0.5 0.71822 0.90967 1.10112 0.00000
MD: 0.6 -0.68165 -0.43941 -0.19717 0.00038
MD: 0.7 -0.49159 -0.30424 -0.11689 0.00146
MD: 0.8 -0.32245 -0.20867 -0.09489 0.00033
MD: 1 -0.00097 0.04091 0.08279 0.05555
EXU 1 0.00453 0.00898 0.01343 0.00008
EXU 2 -0.02827 -0.01508 -0.00190 0.02498
EXU 4 -0.28716 -0.15126 -0.01537 0.02914
EXU 5 -0.12170 0.38254 0.88679 0.13704
EXU 6 -4.07110 -1.80779 0.45552 0.11747
EXU 7 1.62021 7.86642 14.11262 0.01357
DIAM -14.54667 -6.29276 1.96115 0.13510
AM/FM -0.64448 -0.29136 0.06177 0.10585

Table 8. AIC of the models fitted with different link functions.
AIC: small is better. The smallest AIC is in bold, for easy identification.

Link function Logit Probit Complementary log-log Cauchit
AIC 1133.257 1135.597 1147.505 1141.221

To verify the final model goodness of fit we used the Hosmer and Lemeshow test that results in a p-value of
0.59166. With a p-value of this magnitude has no evidence to reject the null hypothesis that the fit of the model is
satisfactory.
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Figure 5. Dispersion of the Pearson and Deviance residuals, in the left and in the center, respectively. ROC curve in the right,
with AUC value, cutoff, specificity and sensitivity.

The Pearson and the Deviance residuals are presented in the Figure 5. If the model is well adjusted it is expected
that these residues follow a standard normal distribution, and in this way the most of the observations have to stay
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present in the interval -3 and 3 (99.7% of the data within three standard deviations to the mean, zero). Also in Figure
5 we have the ROC curve. Area Under the Curve (AUC) superior than 0.70 is interpreted as a good fit for the model.
All this characteristics are shown in Figure 5.

With this model we also trained a predictive model. For this we randomly splited the dataset in two parts, called
in literature of train and test. As the name say, with the train dataset we train the model and test the results doing
a prediction in the test dataset. Here we splited in 70 and 30. 70% for the train and 30% for test. In Table 9 are
presented the number of observations in each dataset and the percentage of patients with and without signs of DR.
We see that the patients are well distributed in the datasets.

Table 9. Number (#) of patients and the number (and percentage) of patients with and without signs of DR in each dataset.

# of patients Patients with no signs of DR Patients with signs of DR

Train dataset 806 386 (48%) 420 (52%)
Test dataset 345 154 (45%) 191 (55%)

The results of the predictive model is seen in Figure 6. The AUC above 0.70 means that the model have a good
fit. The better AUC, specificity and sensitivity is found using a threshold of 0.513, very similar to the standard 0.5.
Both specificity (true negative rate - proportion of patients without signs of DR that are correctly identified as such)
and sensitivity are bigger than 0.65, with a bigger sensitivity (true positive rate - proportion of patients with signs of
DR that are correctly identified as such), 0.805.
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Figure 6. ROC curve with the results (AUC, specificity, sensitivity and threshold) of the predictive model. The model was
fitted using the train dataset and the prediction was performed in the test dataset.

Other, and final, model that we fitted is a model considering principal component analysis, PCA. Instead of using
all the MD and EXU variables together, that present a strong level of correlation (Figures 3 and 4), we performed a
PCA and considered as covariables in the model only the first principal component of the MD variables and the
first principal component of the EXU variables. The fitted model was a model with five covariables. The two first
principal components, the euclidian distance, the diameter and the AM/FM-based classification.

Performing a variable selection by the AIC we finish with a model with only the first components, which
means that in the presence of the principal components the euclidian distance, the diameter and the AM/FM-based
classification aren’t statiscally significant. This model present an AIC of 1507.002, which is much bigger than the
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AIC of the models presented in Table 8. This means that the model with the results presented in Table 7 still shown
to be better and that the presence of the set of MD and EXU variables aren’t detrimental to the model goodness-of-fit.

4. Conclusion

Practically all the patients in the study have a sufficient quality assessment and present a SRA. The means of the
euclidian distance of the center of the macula to the center of the optic disc are practically the same (without a
statistical difference), independent from if the patient present or not signs of DR. The same conclusion can be made
for the diameter of the optic disc.

The fitted final model with all the variables presented a satisfactory goodness-of-fit, with a specificity (true
negative rate) and sensitivity (true positive rate) superior than 0.70, and with an AUC over 0.80. The estimated
cutoff of the probability to classify the patients in one of the two status is very close to 0.5.

About the features, almost all the MD and EUX variables are present in the final model, showing that they are
statistically significant to classify the patients. Thinking in the correlation between this variables, a PCA analysis
was performe, and the first principal components was used as covariables. The resulting model presented a good fit,
but much lower than the model with all the variables, as the AIC obtained shown. With the predictive model the
results was also very satisfatory. The obtained AUC was greater than 0.70 and the specificity (true negative rate) and
sensitivity (true positive rate) was greater than 0.65.

From the Table 7 we can achieve some very interesting interpretations and conclusions about the variables
coefficients. In the list below we give the interpretation of each one using odds ratio.

• AM/FM-based classification.

– The odds ratio (ÔR), chance, of a patient with positive (pathological lesions) AM/FM-based classification
present signs of DR is 0.52 (ÔR = exp(−0.64448)) times that of those with negative (normal retinal
structures) AM/FM-based classification, with both having all the same values in the others characteristics.

• Microaneurism Detection (MD) at different confidence levels.

– For each one more microaneurisms found at confidence level of 0.5, the odds ratio, chance, of present
signs of DR is 2.05 (exp(0.71822)) times that of those with one less, i.e., the odds increase.

– For each one more microaneurisms found at confidence level of 0.6, the odds ratio of present signs of
DR is 0.51 (exp(−0.68165)) times that of those with one less, i.e., the odds decrease.

– For each one more microaneurisms found at confidence level of 0.7, the odds of present signs of DR is
0.61 (exp(−0.49159)) times that of those with one less, i.e., the odds decrease.

– For each one more microaneurisms found at confidence level of 0.8, the odds of present signs of DR is
0.72 (exp(−0.32245)) times that of those with one less, i.e., the odds decrease.

– For each one more microaneurisms found at confidence level of 1, the odds of present signs of DR is 1
(exp(−0.00097)) times that of those with one less, i.e., the odds decrease.

• Exudates detection in different set of points.

– Number of points: 1. Exudates mean: 64.097. The odds ratio, chance, of a patient with EXU 1 of
69.097 present signs of DR is 1.02 (exp(0.00453 · (69.097−64.097))) times that of those with EXU 1
of 64.097.

– Number of points: 2. Exudates mean: 23.088. The odds ratio of a patient with EXU 2 of 28.088 present
signs of DR is 0.87 (exp(−0.02827 · (28.088−23.088))) times that of those with EXU 2 of 23.088.

– Number of points: 4. Exudates mean: 1.836. The odds of a patient with EXU 4 of 3.836 present signs of
DR is 0.56 (exp(−0.28716 · (3.836−1.836))) times that of those with EXU 4 of 1.836.
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– Number of points: 5. Exudates mean: 0.561. The odds of a patient with EXU 5 of 2.561 present signs of
DR is 0.78 (exp(−0.1217 · (2.561−0.561))) times that of those with EXU 5 of 0.561.

– Number of points: 6. Exudates mean: 0.212. The odds of a patient with EXU 6 of 1.212 present signs of
DR is 0.02 (exp(−4.0711 · (1.212−0.212))) times that of those with EXU 6 of 0.212.

– Number of points: 7. Exudates mean: 0.086. The odds of a patient with EXU 7 of 1.086 present signs of
DR is 5.05 (exp(1.62021 · (1.086−0.086))) times that of those with EXU 7 of 0.086.

• Diameter of the optic disc.

– Mean: 0.108. The odds of a patient with diameter of the optic disc of 0.358 present signs of DR is 0.03
(exp(−14.54667 · (0.358−0.108))) times that of those with diameter of 0.108.

We saw that as we increase the confidence level of the MD detections the odds ratio approach to zero, which
means that for high confidence levels differences in the MD detection doesn’t impact the chance of the patient
present signs of DR. For the exudates detection we see that the difference between the odds ratio aren’t big, with an
exception in the detection with the set of seven points. With this set the odds ratio between the groups is big.

With the diameter of the optic disc the differences between the odds ratio is also not so big. A bigger difference
is observed when we compare the odds ratio of the patients by the AM/FM based-classification.

As a final conclusion we can highlight that almost all the variables stay present in the final model, this show
that in general all the variables measured are useful when putted together in the model to classify patients about
the presence of signs of DR. Looking individually to each coefficient we don’t see considerable differences. The
final model and the predictive model present very good results with satisfactory measures of accuracy and quality
of fit and prediction. The model considering the canonical link function, logistic, presented the best results when
compared with others.
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6. Appendix

6.1 Appendix A: R code for t-test implementation

Here we present the code for the t-test with the euclidian distante variable. For the diameter variable the procedure
is exactly the same.

1 # d a t a s e t : da ============================================================ #
2 # r e s p o n s e v a r i a b l e : d r ( two l e v e l s , ” yes ” and ” no ” ) . 17 t h column of da == #
3 # yes = p r e s e n t s i g n s o f DR =========================== #
4 # no = shows no s i g n s o f DR =========================== #
5
6 ## means ================================================================ ##
7 # euc : e u c l i d e a n d i s t a n c e o f t h e c e n t e r o f t h e macula t o t h e c e n t e r o f t h e
8 # o p t i c d i s c
9 euc . no <− da [ da $ dr == ” no ” , 17] ; euc . yes <− da [ da $ dr == ” yes ” , 17]

10
11 ## w e i g h t s ============================================================== ##
12 # wei : w e i g h t s
13 wei . no <− ( l e n g t h ( euc . no )−1) / ( ( l e n g t h ( euc . no )−1) + ( l e n g t h ( euc . yes )−1) )
14 wei . yes <− ( l e n g t h ( euc . yes )−1) / ( ( l e n g t h ( euc . no )−1) + ( l e n g t h ( euc . yes )−1) )
15
16 ## po o l ed v a r i a n c e e s t i m a t e ============================================= ##
17 sp2 <− wei . no * v a r ( euc . no ) + wei . yes * v a r ( euc . yes )
18
19 ## n u m e r a t o r and d e n o m i n a t o r o f t h e t e s t s t a t i s t i c ====================== ##
20 num <− ( mean ( euc . no ) − mean ( euc . yes ) )
21 deno <− s q r t ( sp2 * (1 / l e n g t h ( euc . no ) + 1 / l e n g t h ( euc . yes ) ) )
22
23 ## t e s t s t a t i s t i c and v a l u e o f t h e r e f e r e n c e d i s t r i b u t i o n =============== ##
24 t t <− num / deno
25 r e f <− q t ( . 9 5 , nrow ( da ) − 2) # p r o b a b i l i t y o f t y p e I e r r o r o f \ a l p h a = 0 . 0 5
26 # d e g r e e s o f f reedom : number o f o b s e r v a t i o n s
27 # ( nrow ( da ) )−1
28 # i f t t > r e f => r e j e c t t h e n u l l h y p h o t e s i s ============================= ##
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6.2 Appendix B: R code for χ2-test implementation

1 # v a r i a b l e : am / fm−based c l a s s i f i c a t i o n =================================== #
2
3 ## e x p e c t e d c o u n t s ====================================================== ##
4 # exp : e x p e c t e d c o u n t
5 # neg : n e g a t i v e am / fm c l a s s i f i c a t i o n
6 # pos : p o s i t i v e am / fm c l a s s i f i c a t i o n
7 # nodr : shows no s i g n s o f DR
8 # dr : p r e s e n t s i g n s o f DR
9 # amfm : am / fm−based c l a s s i f i c a t i o n

10 exp neg . nodr <−
11 nrow ( da [ da $amfm == ” neg ” , ] ) * nrow ( da [ da $ d r == ” no ” , ] ) / nrow ( da )
12 exp neg . d r <−
13 nrow ( da [ da $amfm == ” neg ” , ] ) * nrow ( da [ da $ d r == ” yes ” , ] ) / nrow ( da )
14 exp pos . nodr <−
15 nrow ( da [ da $amfm == ” pos ” , ] ) * nrow ( da [ da $ d r == ” no ” , ] ) / nrow ( da )
16 exp pos . d r <−
17 nrow ( da [ da $amfm == ” pos ” , ] ) * nrow ( da [ da $ d r == ” yes ” , ] ) / nrow ( da )
18
19 ## t e s t s t a t i s t i c and v a l u e o f t h e r e f e r e n c e d i s t r i b u t i o n =============== ##
20 # obs : o b s e r v e d c o u n t
21 obs neg . nodr <− nrow ( da [ da $amfm == ” neg ” & da $ dr == ” no ” , ] )
22 obs neg . d r <− nrow ( da [ da $amfm == ” neg ” & da $ dr == ” yes ” , ] )
23 obs pos . nodr <− nrow ( da [ da $amfm == ” pos ” & da $ dr == ” no ” , ] )
24 obs pos . d r <− nrow ( da [ da $amfm == ” pos ” & da $ dr == ” yes ” , ] )
25
26 neg . nodr <− ( ( obs neg . nodr − exp neg . nodr ) ** 2) / exp neg . nodr
27 neg . d r <− ( ( obs neg . d r − exp neg . d r ) ** 2) / exp neg . d r
28 pos . nodr <− ( ( obs pos . nodr − exp pos . nodr ) ** 2) / exp pos . nodr
29 pos . d r <− ( ( obs pos . d r − exp pos . d r ) ** 2) / exp pos . d r
30
31 # c h i : \ c h i ˆ{2} t e s t s t a t i s t i c
32 c h i <− neg . nodr + neg . d r + pos . nodr + pos . d r
33 r e f <− q c h i s q ( . 9 5 , 1 ) # p r o b a b i l i t y o f t y p e I e r r o r o f \ a l p h a = 0 . 0 5
34 # d e g r e e s o f f reedom : number o f c l a s s e s o f one
35 # v a r i a b l e ( amfm ) minus (−) 1
36 # t i m e s t h e number o f c l a s s e s o f
37 # t h e o t h e r v a r i a b l e ( d r ) − 1 .
38 # 2−1 x 2−1 = 1
39 # i f c h i > r e f => r e j e c t t h e n u l l h y p h o t e s i s ============================ ##
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6.3 Appendix C: Variable selection using the AIC as a criterium

The variable selection was made with the stepAIC() R function. All the steps are presented in Table 10.
In the first step we see that the smallest AIC (with the AIC the lower the better) is obtained in the model without the
variable EXU 8 (looking to more decimal places). In the second step the better AIC is obtained when we take out
the variable EUC. In the third step we take out the EXU 3 variable, in the fourth step the variable MD: 0.9 and in the
fifth step the better AIC is obtained when all the variables are present, i.e., we don’t need to take out more variables,
this is the best model by the AIC criterium.

Table 10. Selecion of variables in five steps. In each step is presented the AIC of the model without the respective feature. In
bold is presented the smallest, better, AIC at each step.

1st step 2nd step 3rd step 4th step 5th step

Feature AIC Feature AIC Feature AIC Feature AIC Feature AIC

MD: 0.5 1262.5 MD: 0.5 1260.5 MD: 0.5 1258.5 MD: 0.5 1257.2 MD: 0.5 1257.1
MD: 0.6 1151.5 MD: 0.6 1149.5 MD: 0.6 1147.5 MD: 0.6 1145.6 MD: 0.6 1144.3
MD: 0.7 1148.9 MD: 0.7 1146.9 MD: 0.7 1144.9 MD: 0.7 1143.0 MD: 0.7 1141.7
MD: 0.8 1144.8 MD: 0.8 1142.9 MD: 0.8 1141.0 MD: 0.8 1139.1 MD: 0.8 1144.6
MD: 0.9 1139.1 MD: 0.9 1137.1 MD: 0.9 1135.2 MD: 0.9 1133.3 - -
MD: 1 1142.5 MD: 1 1140.5 MD: 1 1138.6 MD: 1 1136.8 MD: 1 1135.0
EXU 1 1153.3 EXU 1 1151.3 EXU 1 1149.5 EXU 1 1149.0 EXU 1 1147.7
EXU 2 1141.8 EXU 2 1139.8 EXU 2 1137.8 EXU 2 1137.9 EXU 2 1136.4
EXU 3 1138.5 EXU 3 1136.6 EXU 3 1134.6 - - - -
EXU 4 1141.3 EXU 4 1139.3 EXU 4 1137.4 EXU 4 1137.9 EXU 4 1136.5
EXU 5 1141.4 EXU 5 1139.7 EXU 5 1137.7 EXU 5 1135.9 EXU 5 1134.7
EXU 6 1140.7 EXU 6 1139.2 EXU 6 1137.2 EXU 6 1135.4 EXU 6 1134.1
EXU 7 1140.9 EXU 7 1145.3 EXU 7 1143.3 EXU 7 1141.5 EXU 7 1140.2
EXU 8 1138.5 - - - - - - - -
EUC 1138.5 EUC 1136.5 - - - - - -
DIAM 1140.7 DIAM 1138.7 DIAM 1136.7 DIAM 1134.8 DIAM 1133.5
AM/FM 1141.3 AM/FM 1139.3 AM/FM 1137.4 AM/FM 1135.4 AM/FM 1133.9

Model 1140.5 Model 1138.5 Model 1136.5 Model 1134.6 Model 1133.3



Analysis of Diabetic Retinopathy Data via Logistic Regression — 18/18

6.4 Appendix D: Other computations in R

1 ## g e n e r i c code t o f i t t h e model ======================================== ##
2 model <− glm ( r e s p o n s e ˜ v a r i a b l e s # v a r i a b l e 1 + v a r i a b l e 2 + . . .
3 , f a m i l y = b i n o m i a l ( l i n k = l o g i t ) # o r p r o b i t , c l o g l o g , c a u c h i t
4 , d a t a f rame )
5 AIC ( model ) ## g e t t i n g t h e AIC =========================================== ##
6
7 stepAIC ( model ) ## p e r f o r m i n g t h e model s e l e c t i o n by t h e AIC c r i t e r i u m === ##
8
9 ## comput ing c o n f i d e n c e i n t e r v a l s ======================================= ##

10 c o n f i n t . d e f a u l t ( model ) # e s t i m a t e d c o e f f i c i e n t p l u s / minus 95% normal q u a n t i l
11 # t i m e s c o e f f i c i e n t s t a n d a r d e r r o r
12
13 ## p e r f o r m i n g t h e Hosmer−Lemeshow t e s t ================================== ##
14 # l o g i t g o f f u n c t i o n i s i n t h e g e n e r a l h o s l e m package
15 l o g i t g o f ( model $ r e s p o n s e , f i t t e d ( model ) )
16
17 ## comput ing t h e P e a r s o n and Deviance r e s i d u a l s ========================= ##
18 r e s i d u a l s ( model , t y p e = ” p e a r s o n ” )
19 r e s i d u a l s ( model , t y p e = ” d e v i a n c e ” )
20
21 ## comput ing t h e ROC c u r v e ============================================== ##
22 # r o c f u n c t i o n i s i n t h e pROC package
23 r o c ( model $ r e s p o n s e , f i t t e d ( model ) )
24 # use t h i s i n s i d e t h e p l o t . r o c ( ) f u n c t i o n wi th t h e a rgumen t s
25 # p r i n t . auc = TRUE and p r i n t . t h r e s = TRUE t o p l o t t h e ROC c u r v e ========= ##
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