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Exercise 1

Exercises on reading tables of distributions.

(a)

Suppose that a population of scores has a normal distribution with mean µ = 80 and
variance σ2 = 9. Use the standard normal table to determine the 2.5-th, 5-th, 25-th,
50-th, 75-th, 95-th and 97.5-th percentile of this distribution of scores. Compare the
answers you obtained manually by that provided by R (use the help function to de-
termine if you need to use pnorm, rnorm, dnorm, etc.)

Solution:

Table 1: In the second column (left to right) we have the values from the standard normal table;
in the third column we have the percentiles obtained manually, after the percentiles provided by
R and in the end the difference between them (we used two decimal places).

Percentile Z Qi = Z · σ + µ R = qnorm(Z, 80, sqrt(9)) Diff = Qi - R

2.5-th -1.96 −1.96 ·
√

9 + 80 = 74.12 74.12 0
5-th -1.64 −1.64 ·

√
9 + 80 = 75.08 75.07 0.01

25-th -0.67 −0.67 ·
√

9 + 80 = 77.99 77.98 0.01
50-th 0.00 0 ·

√
9 + 80 = 80 80 0

75-th 0.67 0.67 ·
√

9 + 80 = 82.01 82.02 -0.01
95-th 1.64 1.64 ·

√
9 + 80 = 84.92 84.93 -0.01

97.5-th 1.96 1.96 ·
√

9 + 80 = 85.88 85.88 0

(b)

Determine the 90-th, 95-th and 97.5-th percentile of a χ2-distribution with

(i.) degrees of freedom equal to 5.

Solution:

Table 2: In the second column (left to right) we have the percentiles provided by the χ2 table;
in the third column we have the percentiles provided by R and in the end the difference between
them (we used three decimal places).

Percentile χ2 (using the table) qchisq(χ2, 5, lower.tail = FALSE) Difference

90-th χ2
0.10 = 9.236 9.236 0

95-th χ2
0.05 = 11.070 11.07 0

97.5-th χ2
0.025 = 12.833 12.833 0
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(ii.) with degrees of freedom equal to 10.

Solution:

Table 3: In the second column we have the percentiles provided by the χ2 table; in the third
column we have the percentiles provided by R and in the end the difference between them (used
three decimal places).

Percentile χ2 (using the table) qchisq(χ2, 10, lower.tail = FALSE) Difference

90-th χ2
0.10 = 15.987 15.987 0

95-th χ2
0.05 = 18.307 18.307 0

97.5-th χ2
0.025 = 20.483 20.483 0

(c)

Determine the 2.5-th, 95-th and 97.5-th percentile of a t-distribution with

(i.) degrees of freedom equal to 5.

Solution:

Table 4: In the second column we have the percentiles provided by the table, using the cumulative
probability; in the third column we have the percentiles provided by R and in the end the difference
between them (we used three decimal places).

Percentile cum. prob (using the table) R = qt(cum. prob, 5) Difference

2.5-th t0.025 = -2.571 -2.571 0
95-th t0.95 = 2.015 2.015 0

97.5-th t0.975 = 2.571 2.571 0

(ii.) with degrees of freedom equal to 1000.

Solution:

Table 5: In the second column we have the percentiles provided by the table, using the cumulative
probability; in the third column we have the percentiles provided by R and in the end the difference
between them (we used three decimal places).

Percentile cum. prob (using the table) R = qt(cum. prob, 1000) Difference

2.5-th t0.025 = -1.962 -1.962 0
95-th t0.95 = 1.646 1.646 0

97.5-th t0.975 = 1.962 1.962 0
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(d)

As the degrees of freedom of a t-distribution increases, show that the percentiles
becomes closer to that of the standard normal distribution. You can choose a few
percentiles to demonstrate this (e.g., 2.5-th, 25-th, 75-th, 97.5-th).

Solution:

In the Table 6 we see that for every percentile, conform the degrees of freedom increase, the differ-
ence between the t-distribution and the Standard Normal distribution is smaller, being virtually
zero, 0.001, for very high degrees, like 1000.

Table 6: Percentiles of a t-distribution and standard normal distribution for seven different degrees
of freedom in four different percentiles. In the last column we have the absolute difference between
them.

Percentile Degrees of freedom t-distribution Standard Normal distribution |Difference|

2.5-th 5 -2.571 -1.960 0.611
2.5-th 10 -2.228 -1.960 0.268
2.5-th 15 -2.131 -1.960 0.171
2.5-th 20 -2.086 -1.960 0.126
2.5-th 25 -2.060 -1.960 0.100
2.5-th 30 -2.042 -1.960 0.082
2.5-th 1000 -1.962 -1.960 0.002

25-th 5 -0.727 -0.674 0.053
25-th 10 -0.700 -0.674 0.026
25-th 15 -0.691 -0.674 0.017
25-th 20 -0.687 -0.674 0.013
25-th 25 -0.684 -0.674 0.010
25-th 30 -0.683 -0.674 0.009
25-th 1000 -0.675 -0.674 0.001

75-th 5 0.727 0.674 0.053
75-th 10 0.700 0.674 0.026
75-th 15 0.691 0.674 0.017
75-th 20 0.687 0.674 0.013
75-th 25 0.684 0.674 0.010
75-th 30 0.683 0.674 0.009
75-th 1000 0.675 0.674 0.001

97.5-th 5 2.571 1.960 0.611
97.5-th 10 2.228 1.960 0.268
97.5-th 15 2.131 1.960 0.171
97.5-th 20 2.086 1.960 0.126
97.5-th 25 2.060 1.960 0.100
97.5-th 30 2.042 1.960 0.082
97.5-th 1000 1.962 1.960 0.002
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We can also see that the difference between this distributions for small degrees of freedom is smaller
for percentiles more closer to the median, the 50-th percentile, and bigger when the percentile is
more closer to the borders (zero and 100-th percentile).

(e)

Determine the 90-th, 95-th and 97.5-th percentile of a F-distribution with

(i.) numerator degrees of freedom dfn = 1 and denominator degrees of freedom dfd =
10.

Solution:

Table 7: In the third column we have the percentiles provided by the table; in the fourth column we
have the percentiles provided by R and in the end the difference between them (used two decimal
places).

Percentile p (table) F ∗ qf(1− p, 1, 10) Difference

90-th 0.1 3.29 3.29 0
95-th 0.05 4.96 4.96 0

97.5-th 0.025 6.94 6.94 0

(ii.) numerator degrees of freedom dfn = 5 and denominator degrees of freedom dfd =
31.

Solution:

Table 8: In the third column we have the percentiles provided by the table; in the fourth column we
have the percentiles provided by R and in the end the difference between them (used two decimal
places).

Percentile p (table) F ∗ qf(1− p, 5, 31) Difference

90-th 0.1 2.05 2.04 0.01
95-th 0.05 2.53 2.52 0.01

97.5-th 0.025 3.03 3.01 0.02

In the table we don’t have dfd = 31, so we approximate to 30.

Exercise 2

Recall that many of the test statistics are compared to a null distribution which is
often standard normal (normal with mean equal 0 and variance equal to 1). We did
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not provide any theoretical justification for this in class. In this exercise you will need
to conduct some simulation studies that illustrate this.

(a)

In testing for the equality of population proportions, the test statistic based on random
samples of sizes and proportions nA and π̂A from population A and nA and π̂B from
population B is

T1 =
π̂A − π̂B√

π̂A(1−π̂A)
nA

+ π̂B(1−π̂B)
nB

.

When H0 : πA = πB is true then the reference distribution for T1 is approximately
equal to that of a standard normal when both sample sizes nA and nB are sufficiently
large. Conduct a simulation study to determine an empirical distribution of T1 when
the null hypothesis is correct for each pair of sample sizes. Try a few pairs, say, (i.)
nA = nB = 30, (ii.) nA = 25, nB = 40.

Solution:

# <code r> ===================================================================== #
# empty vector of size 1e4 (# of replications) to store the test statistics
ts <- numeric(1e4)
# function to generate the reference distribution
ref.dist <- function(pia = .67, pib = .67, na, nb, title){

# choosed population proportions: 0.67
t1 <- function(pia, pib, na, nb){ # test statistic

(pia - pib) / sqrt( (pia*(1-pia)/na) + (pib*(1-pib)/nb) )
}
for (i in 1:length(ts)) { # computing the reference distribution

hpia <- mean(rbinom(na, 1, pia))
hpib <- mean(rbinom(nb, 1, pib))
ts[i] <- t1(pia = hpia, pib = hpib, na = na, nb = nb)

}
# histogram
hist(ts, freq = FALSE, col = "gray60", las = 1, xlab = "", ylab = "", main = NA

, axes = FALSE) ; axis(side = 1, at = -4:4)
lines(density(ts), col = "#0080ff", lwd = 3)
abline(v = c(quantile(ts, .025), mean(ts), quantile(ts, .975))

, col = 2, lwd = 2)
mtext(side = 3, text = title, adj = 0, cex = 1.3)

}
par(mfrow = c(1, 2), mar = c(2, 2, 4, 2))
# generating the reference distribution
ref.dist(na = 30, nb = 30, title = bquote(paste(n[A], " = " , n[B], " = 30")))
ref.dist(na = 25, nb = 40, title = bquote(paste(n[A], " = 25, " , n[B], " = 40")))
# </code r> ==================================================================== #
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−4 −3 −2 −1 0 1 2 3 4

nA = nB = 30

−4 −3 −2 −1 0 1 2 3 4

nA = 25, nB = 40

Figure 1: Empirical distribution of T1 when the null hypothesis in correct for two different pair of
sample sizes. In blue we have the estimated density for this distributions and in red the mean, the
2.5th and 97.5th percentiles.

We can see in Figure 1 that in both simulation scenarios we found a bell shape behavior, with
mean around zero. In red we have the mean, the 2.5th and 97.5th percentiles, and in both cases
this percentiles are very close to -2, 2, which is a sign that the reference distributions are very
similar to a Standard Normal distribution, because we know that in a Standard Normal we have
95% of the data between ± 1.96 (very close to 2). The mean close to zero is another sign that
the reference distributions are very similar to a Standard Normal distribution, since in a Standard
Normal the mean is zero.

(b)

In testing for the equality of the means of two Gaussian populations with common
and known variance σ2, the test statistic based on the sample means X̄A and X̄B is

Z =
X̄A − X̄B√
σ2

(
1
nA

+ 1
nB

) .
Solution:

# <code r> ===================================================================== #
# empty vector of size 1e4 (# of replications) to store the test statistics
zs <- numeric(1e4)
# function to generate the reference distribution
ref.dist <- function(mua = 24, mub = 24, s2 = 32, na, nb, title){

# choosed population means: 24 ; choosed population variances: 32
z <- function(mua, mub, s2, na, nb){ # test statistic

(mua - mub) / sqrt( s2 * ((1/na) + (1/nb)) )
}
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for (i in 1:length(zs)) { # computing the reference distribution
hmua <- mean(rnorm(na, mua, sqrt(s2)))
hmub <- mean(rnorm(nb, mub, sqrt(s2)))
zs[i] <- z(mua = hmua, mub = hmub, s2, na = na, nb = nb)

}
# histogram
hist(zs, freq = FALSE, col = "gray60", las = 1, xlab = "", ylab = "", main = NA

, axes = FALSE) ; axis(side = 1, at = -4:4)
lines(density(zs), col = "#0080ff", lwd = 3)
abline(v = c(quantile(zs, .025), mean(ts), quantile(zs, .975))

, col = 2, lwd = 2)
mtext(side = 3, text = title, adj = 0, cex = 1.3)

}
par(mfrow = c(1, 2), mar = c(2, 2, 4, 2))
# generating the reference distribution
ref.dist(na = 30, nb = 30, title = bquote(paste(n[A], " = " , n[B], " = 30")))
ref.dist(na = 25, nb = 40, title = bquote(paste(n[A], " = 25, " , n[B], " = 40")))
# </code r> ==================================================================== #

−4 −3 −2 −1 0 1 2 3 4

nA = nB = 30

−4 −3 −2 −1 0 1 2 3 4

nA = 25, nB = 40

Figure 2: Empirical distribution of Z when the null hypothesis in correct for two different pair of
sample sizes. In blue we have the estimated density for this distributions and in red the mean, the
2.5th and 97.5th percentiles.

We can see in Figure 2 that in both simulation scenarios we found a bell shape behavior, with
mean around zero and with 2.5th and 97.5th percentiles very close to -2, 2. Which is a sign that
the reference distributions are very similar to a Standard Normal distribution.

(c)

When the common variance in the two normal distribution case is not known it has
to be estimated. Denote the sample variances for group A to be
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S2
A =

1

nA − 1

nA∑
i=1

(XA
i − X̄A)2.

The sample variance for group B is defined in a similar way. Then the pooled variance
estimate is a weighted average of these two sample variances

S2
P = WAS

2
A +WBS

2
B

where the weights are WA = nA−1
(nA−1)+(nB−1)

. The test statistic for comparing the popu-
lation means is similar to that of Z above but with σ2 replaced by its estimator S2

P

because it is not known. Thus,

T =
X̄A − X̄B√
S2
P

(
1
nA

+ 1
nB

) .
The distribution of T under the null hypothesis is t with degrees of freedom equal
to d = (nA − 1) + (nB − 1). Now conduct simulations that demonstrate this theoretical
result. You may choose whatever settings you like. When you simulate your data,
you need to specify the variance σ2 but when you compute your test statistic you need
to pretend that you don’t actually know this.

Solution:

# <code r> ===================================================================== #
# empty vector of size 1e4 (# of replications) to store the test statistics
ts <- numeric(1e4)
# function to generate the reference distribution
ref.dist <- function(mua = 24, mub = 24, s2 = 32, na, nb, title){

# choosed population means: 24 ; choosed population variances: 32
t <- function(xa, xb, mua, mub, na, nb){ # test statistic

sa2 <- sum((xa - mua)**2) / (na - 1)
sb2 <- sum((xb - mub)**2) / (nb - 1)
wa <- (na - 1) / ((na - 1) + (nb - 1))
wb <- (nb - 1) / ((na - 1) + (nb - 1))
sp2 <- wa * sa2 + wb * sb2 # pooled variance estimate
(mua - mub) / sqrt( sp2 * ((1/na) + (1/nb)) )

}
for (i in 1:length(ts)) { # computing the reference distribution

xa <- rnorm(na, mua, sqrt(s2))
xb <- rnorm(nb, mub, sqrt(s2))
hmua <- mean(xa)
hmub <- mean(xb)
ts[i] <- t(xa = xa, xb = xb, mua = hmua, mub = hmub, na = na, nb = nb)

}
# histogram
hist(ts, freq = FALSE, col = "gray60", las = 1, xlab = "", ylab = "", main = NA

, axes = FALSE) ; axis(side = 1, at = -4:4)
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lines(density(ts), col = "#0080ff", lwd = 3)
abline(v = c(quantile(ts, .025), mean(ts), quantile(ts, .975))

, col = 2, lwd = 2)
mtext(side = 3, text = title, adj = 0, cex = 1.3)

}
par(mfrow = c(1, 2), mar = c(2, 2, 4, 2))
# generating the reference distribution
ref.dist(na = 30, nb = 30, title = bquote(paste(n[A], " = " , n[B], " = 30")))
ref.dist(na = 25, nb = 40, title = bquote(paste(n[A], " = 25, " , n[B], " = 40")))
# </code r> ==================================================================== #

−4 −3 −2 −1 0 1 2 3 4

nA = nB = 30

−4 −3 −2 −1 0 1 2 3 4

nA = 25, nB = 40

Figure 3: Empirical distribution of T when the null hypothesis in correct for two different pair of
sample sizes. In blue we have the estimated density for this distributions and in red the mean, the
2.5th and 97.5th percentiles.

We can see in Figure 3 that in both simulation scenarios we found a bell shape behavior, with
mean around zero and with 2.5th and 97.5th percentiles very close to -2, 2. Which is a sign that
the reference distributions are very similar to a Standard Normal distribution.

Exercise 3

Prior to the 2016 US Presidential elections, a political scientist conducted a study to
determine if there was any association between support for then-candidate DJ Trump
and the view on imposing severe restriction on immigration. The results of the survey
based on a sample of n = 500 respondents are displayed below.

Support restriction Do not support restriction Total
Support DJT 150 50 200

Do not support DJT 100 200 300

11



(a)

What is the proportion of participants who support the immigration restriction and
at the same time also support DJ Trump?

Solution:

Proportion =
Support restriction ∩ Support DJ Trump

n
=

150

500
= 0.3.

(b)

What is the marginal sample proportion of DJT supporters? What is the marginal
sample proportion of the restriction on immigration?

Solution:

Proportion of DJT supporters =
Support DJT

n
=

200

500
= 0.4.

Proportion of the restriction on immigration =
Support restriction

n
=

150 + 100

500
= 0.5.

(c)

Among those who do not support the restriction, what is the proportion of DJT sup-
porters? What is the odds of selecting a participant who support DJT?

Solution:

Proportion =
DJT supporters | Do not support the restriction

Do not support restriction
=

50

250
= 0.2.

Odds =
50/250

1− 50/250
= 0.25.

(d)

Conduct a formal test of association between support for DJT and support for re-
striction on immigration. Note that a formal test should include

(i.) the null and alternative hypotheses.

Solution:

H0: There isn’t not a association between support for DJT and whether or not someone support
restriction on immigration.

Ha: There is a association between support for DJT and whether or not someone support restric-
tion on immigration.
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(ii.) the test stastistic.

Solution:

χ2 Test.

ESupport DJT, Support restriction =
200 · 250

500
= 100

ESupport DJT, Don’t support restriction =
200 · 250

500
= 100

EDon’t support DJT, Support restriction =
300 · 250

500
= 150

EDon’t support DJT, Don’t support restriction =
300 · 250

500
= 150

Observed and expected counts are often presented together in a contingency table. In the table
below, expected values are presented in parentheses.

Support restriction Do not support restriction Total
Support DJT 150 (100) 50 (100) 200

Do not support DJT 100 (150) 200 (150) 300
Total 250 250 500

χ2 Test Statistic:

χ2 =
∑ (O − E)2

E

=
(150− 100)2

100
+

(50− 100)2

100
+

(100− 150)2

150
+

(200− 150)2

150
= 25 + 25 + 16.6666667 + 16.6666667

= 83.3333333

(iii.) its null distribution and the rejection region based on the probability of Type I
error of α = 0.05.

Solution:

The χ2 test statistic is 83.33 with df = (number of rows - 1) · (number of columns - 1) = (2 - 1) ·
(2 - 1) = 1.

Using the table, we find that for a probability of Type I error of α = 0.05, with 1 degree of
freedom, the rejection region is determined by the value 3.841, which is much smaller than the
value of the test statistic. Therefore, we have significant statistical evidence to don’t accept H0.
We have statistical evidence that there is a association between support for DJT and whether or
not someone support restriction on immigration.
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Exercise 4

Assume that children’s score in the KidScore data set has a N(µ1, σ
2) distribution if the

mother has graduated from high school, and N(µ2, σ
2) if the mother has not graduated

from high school. Using the random sample collected in the KidScore dataset,

(a)

Draw the boxplots for each of the two samples. Compare and contrast these two
boxplots.

Solution:

# <code r> ===================================================================== #
path <- "~/Dropbox/CLASS-DROPBOX/BOOK-DATA/"
da <- read.table(paste0(path, "KidScore.txt"), header = TRUE, sep = ",")
da$momHs <- with(da, factor(momHs, labels = c("No", "Yes")))

boxplot(kidScore ~ momHs, da, las = 1, xlab = "Mother Completed High School?"
, main = "Child's Test Score at Age 3")

# </code r> ==================================================================== #

No Yes

20

40

60

80

100

120

140

Child's Test Score at Age 3

Mother Completed High School?

Figure 4: Boxplot for the child’s test score at age 3 by mothers that completed, or not, the high
school.

We can see in the Figure 4 that childrens of mothers that completed the high school present
biggest medians and smallest variance, than the childrens of mothers that didn’t completed the
high school.
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(b)

Compute the sample means and variances for each of the two groups.

Solution:

# <code r> ===================================================================== #
library(plyr)
ddply(da, .(momHs), summarise, Mean = mean(kidScore), Variance = var(kidScore))
# </code r> ==================================================================== #

momHs Mean Variance
1 No 77.54839 509.5764
2 Yes 89.31965 362.8828

(c)

Compute the pooled variance estimate S2
P .

Solution:

Pooled variance: S2
P = WmomHs: NoS

2
momHs: No +WmomHs: YesS

2
momHs: Yes.

S2
momHs: No =

1

nmomHs: No − 1

nmomHs: No∑
i=1

(
XmomHs: No
i − X̄momHs: No

)2
= 509.5764376.

WmomHs: No =
nmomHs: No − 1

(nmomHs: No − 1) + (nmomHs: Yes − 1)
=

92

92 + 340
= 0.212963.

S2
momHs: Yes =

1

nmomHs: Yes − 1

nmomHs: Yes∑
i=1

(
XmomHs: Yes
i − X̄momHs: Yes

)2
= 362.8828187.

WmomHs: Yes =
nmomHs: Yes − 1

(nmomHs: Yes − 1) + (nmomHs: No − 1)
=

340

340 + 92
= 0.787037.

S2
P = 108.520908 + 285.6022184 = 394.1231264.

(d)

Conduct a formal test for comparing the means µ1 and µ2. Again - you already should
know the complete information that is needed to conduct this test.

Solution:

We will test the hypothese that the difference between the mean of the child’s test score at age
3 of mothers that completed the high school are not statiscally significant to the mean of the
child’s test score at age 3 of mothers that didn’t completed the high school.

Hypotheses : H0 : µmomHs: No = µmomHs: Yes, Ha = µmomHs: No 6= µmomHs: Yes.

15



Test Statistic: T =
X̄momHs: No − X̄momHs: Yes√

S2
P

(
1

nmomHs: No
+ 1

nmomHs: Yes

)
=

77.5483871− 89.3196481√
394.1231264 ·

(
1
93

+ 1
341

)
= −5.0685161

Reference distribution: t-Student with (nmomHs: No−1)+(nmomHs: Yes−1) = 432 degrees of freedom.
We will also consider an α = 0.05.

For this probability of Type I error and this amount of degrees of freedom, the critical value is

# <code r> ===================================================================== #
qt(.975, 432)
# </code r> ==================================================================== #

[1] 1.965471

t0.025,432 = −1.965471, t0.975,432 = 1.965471. Extremely closer to a Standard Normal.

As our Test Statistic is less than the critical value, we don’t accept the H0.

We have statistical evidence to don’t accept H0, in other words, we have evidence that exist
difference statiscally significant between the mean of the child’s test score at age 3 of mothers that
completed the high school and the mean of the child’s test score at age 3 of mothers that didn’t
completed the high school.
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