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Exercise 1

A politician running for office is interested in estimating the proportion among legal
residents of the state of California who support the DREAMER’s act (which we de-
note as π). An organization was instructed to conduct a poll with the constraint that
the estimator should be within a tolerance limit of 0.05.

Suppose that the true population proportion of supporters is π = 0.65. The organiza-
tion is now at a planning stage to determine the desired sample size so that there is
only a slim chance of 10% that an estimator (sample proportion) falls outside of the
designated tolerance limit (i.e., it falls outside of 0.60 and 0.70).

(a)

Conduct a simulation study to determine if a sample size of n = 200 respondents will
be sufficient to meet the target? As a guide to approaching this problem: (i.) simulate
at least B = 10.000 samples each of size n = 200 from a binomial distribution; (ii.)
for each sample record the sample proportion; (iii.) determine the proportion (out B
= 10.000 samples) of sample proportion that fall within the designated tolerance limit.

Solution:

# <code r> ===================================================================== #
## defining some variables
n <- 200 # sample size
B = 1e4 # number of replications
p <- .65 # true proportion
tol <- .05 # tolerance level
in_inter <- numeric(B) # creating empth object of size B

## simulation study code
for (i in 1:B){

samp <- rbinom(n, 1, p) # simulating samples from a binomal dist.
prop <- mean(samp) # sample proportion
abs_samp <- abs(prop - p) # difference to the tolerance level
in_inter[i] <- ifelse(abs_samp <= tol, "in", "out") # if is in or out

}
# proportion of sample proportion that fall within (or out) the tol. level
prop.table(table(in_inter))
# </code r> ==================================================================== #

in_inter
in out

0.8555 0.1445

The proportion is of 15%, bigger than the desired proportion of 10%.
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(b)

If the sample size of n = 200 does not satisfy the requirement above continue with
procedure of finding the smallest sample size that would satisfy the tolerance limit.

Solution:

# <code r> ===================================================================== #
final_prop <- prop.table(table(in_inter)) ; prop_out <- final_prop[[2]]
while (final_prop[[2]] > .1){

for (i in 1:B){
samp <- rbinom(n + 1, 1, p)
prop <- mean(samp) ; abs_samp <- abs(prop - p)
in_inter[i] <- ifelse(abs_samp <= tol, "in", "out")}

final_prop <- prop.table(table(in_inter))
prop_out[length(prop_out)+1] <- final_prop[[2]] ; n <- n + 1}

library(latticeExtra)
xyplot(prop_out ~ 200:n, type = c("h", "p"), pch = 16

, xlab = "Sample size", ylab = "Tolerance limit"
, main = paste0(

"Smallest sample size: ", n, " (tolerance limit: ", min(prop_out), ")")
, scales = list(x = list(at = c(200, n)))
, panel = function(...){

panel.abline(h = .1, col = 2, lty = 2)
panel.xyplot(...)
panel.segments(n, 0, n, min(prop_out), col = 2, lwd = 2)
panel.points(n, min(prop_out), col = 2, pch = 16)})

# </code r> ==================================================================== #

Smallest sample size: 243 (tolerance limit: 0.091)
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Figure 1: Sample sizes vs. tolerance limits.
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Exercise 2

Exercises on calculating binomial probabilities. Let X be a binomial random variable
with n = 5 and probability parameter π = 0.3. Think of this as counting the number
of heads obtained by tossing n = 5 identical coins each of which has the probability
of π = 0.3 that it lands in heads.

(a)

Enumerate the elements of the sample space of X.

Solution:

Ω = {0, 1, 2, 3, 4, 5}.

(b)

Obtain the table of probability mass function, i.e., compute the probabilities P(X = x)
for each x in the sample space.

Solution:

P(X = x) =

(
n

x

)
πx(1− π)n−x =

(
5

x

)
0.3x(0.7)5−x.

x P(X = x)

0 0.16807
1 0.36015
2 0.3087
3 0.1323
4 0.02835
5 0.00243

(c)

Compute P(X ≥ 4).

Solution:

P(X ≥ 4) = P(X = 4) + P(X = 5) = 0.02835 + 0.00243

P(X ≥ 4) = 0.03078.

(d)

Compute P(X < 3).
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Solution:

P(X < 3) = 1− P(X ≥ 3) = 1− [P(X = 3) + P(X ≥ 4)] = 1− [0.1323 + 0.03078] = 1− 0.16308

P(X < 3) = 0.83692.

Exercise 3

Exercises on calculating probabilities for the normal distribution. Some of these
require the use of the standard normal probability table which has been uploaded in
the subfolder ”Admin” in the class dropbox.

(a)

Suppose that the systolic blood pressure (SBP) among white teens follows a normal
distribution with mean µ = 120 units (mm Hg) and standard deviation σ = 4 units.

(i.) What are the first and third quartile SBP values in this population?

Solution:

First quartile: Q1, third quartile: Q3

Z =
Q1 − µ
σ

=
Q1 − 120

4
, Z =

Q3 − µ
σ

=
Q3 − 120

4

The Z value that correspond to 0.25 (first quartile) is -0.67 (using standard normal probability
table), and to 0.75 (third quartile) is 0.67. So,

Q1 = Z · σ + µ = −0.67 · 4 + 120, Q3 = 0.67 · 4 + 120. Q1 = 117.32, Q3 = 122.68.

(ii.) What is the 90-th percentile SBP value?

Solution:

The Z value that correspond to 0.9 (90-th percentile, perc90) is 1.28 (using standard normal prob-
ability table). So,

1.28 =
perc90 − 120

4
, perc90 = 1.28 · 4 + 120, perc90 = 125.12.

(iii.) Use the standard normal table to calculate the proportion of teens with SBP
between 112 and 126 units.
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Solution:

X = proportion of teens with some quantite of SBP (in units).

P(112 ≤ X ≤ 126) = P
(

112− 120

4
≤ X − 120

4
≤ 126− 120

4

)
= P

(
− 2 ≤ Z ≤ 3

2

)
= P(Z ≤ 1.5)− P(Z ≤ −2) = 0.9332− 0.0228

P(112 ≤ X ≤ 126) = 0.9104.

(iv.) A teen was randomly selected from the population. What is the probability that
this teen has SBP that is greater than 130 units?

Solution:

P(X > 130) = 1− P(X ≤ 130) = 1− P
(
X − 120

4
≤ 130− 120

4

)
= 1− P(Z ≤ 2.5) = 1− 0.9938

P(X > 130) = 0.0062.

(v.) An investigator randomly selected 5 teens. What is the probability that none of
them has SBP tha exceeds 130 units?

Solution:

Y = number of teens with SBP that exceeds 130 units.

P(Y = 0) =

(
5

0

)
0.00620(1− 0.0062)5, P(Y = 0) = 0.969382.

(vi.) Again on the 5 teens: what is the probability that exactly 1 has SBP that ex-
ceeds 130 units.

Solution:

P(Y = 1) =

(
5

1

)
0.00621(1− 0.0062)4, P(Y = 1) = 0.0302383.

(b)

A graduate program will admit only students who score on the top 90-th percentile
in an international examination. There is some complication in the admissions pro-
cess because the grading scheme for the examination changed in 2016. Prior to 2016,
the scores ranged from 0 to 800. From 2016 onwards the scores were recalibrated so
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that they range from 0 to 150. Suppose that the pre-2016 scores followed a normal
distribution with mean 600 and variance of 50. From 2016 onwards the distribution
remained normal but the mean is 120 and the variance is 15. One applicant who took
the test in 2015 scored 700 (out of 800) and another who took the test in 2017 scored
130 (out of 200). Check if either of these applicants should be automatically denied
admission based on the examination scores.

Solution:

We have two Normal’s, we can call X ∼ N(600,
√

50) and Y ∼ N(120,
√

15). In a Standard Nor-
mal, N(0, 1), the Z value that correspond to the 90-th percentile, perc90, is 1.28.

For each Normal distributions the 90-th percentiles are:

perc90 = 1.28 ·
√

50 + 600 = 609.0509668, perc90 = 1.28 ·
√

15 + 120 = 124.9574187.

Based on the examination scores both applications shouldn’t be automatically denied, because
both scores are on the top 90-th percentile in the international examination.

Exercise 4

Exercises on calculating binomial probabilities when the sample size n is large. A
center is tasked with understanding the attitude of young college-age adults towards
socialist ideas. Suppose that the true proportion in this population that has a positive
attitude towards socialism is π = 0.65. A random sample of n = 1.000 students were
selected.

(a)

Compute the probability that at least 800 of the students in a sample of size n = 1000
will have a positive view of socialism.

Solution:

X = number of students with positive view of socialism.

P(X ≥ 800) = P
(

X − nπ√
nπ(1− π)

≥ 800− nπ√
nπ(1− π)

)
= P

(
X − 1000 · 0.65√
1000 · 0.65 · 0.35

≥ 800− 1000 · 0.65√
1000 · 0.65 · 0.35

)
= P

(
X − 650

15.0831031
≥ 9.9449032

)
= P(Z ≥ 9.9449032) = 1− P(Z < 9.9449032)

= 1− ≈ 1

P(X ≥ 800) ≈ 0.
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(b)

What is the probability that between 500 and 800 students (in a sample of n = 1000)
will have a positive view of socialism.

Solution:

P(500 ≤ X ≤ 800) = P
(

500− 1000 · 0.65√
1000 · 0.65 · 0.35

≤ X − 1000 · 0.65√
1000 · 0.65 · 0.35

≤ 800− 1000 · 0.65√
1000 · 0.65 · 0.35

)
= P

(
− 9.9449032 ≤ X − 650

15.0831031
≤ 9.9449032

)
= P(Z ≤ 9.9449032)− P(Z ≤ −9.9449032) =≈ 1− ≈ 0

P(500 ≤ X ≤ 800) ≈ 1.

Exercise 5

Two populations of patients are treated with two different drugs for diabetes for a
period of 6 months. The first population is given drug A while the second is given
drug B. At the end of 6 months, a researcher is interested in comparing the propor-
tions of patients in each of the two populations who experience a significant drop in
their blood pressure. Denote these population proportion parameters to be πA and
πB respectively.

A random sample of size nA = 100 was taken from population A and of these YA = 70
had significant drops in blood pressure. Moreover a random sample of size nB = 500
was taken from population B and of these YB = 300 had significant drops in blood
pressure.

(a)

Compute the proportion of patients from each sample who had significant drops in
their blood pressure. Denote these to be π̂A and π̂B.

Solution:

π̂A =
YA
nA

=
70

100
= 0.7, π̂B =

YB
nB

=
300

500
= 0.6. π̂A = 0.7, π̂B = 0.6.

(b)

Conduct a test of hypothesis H0 : πA = πB using the test statistic
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T1 =
π̂A − π̂B√

π̂A(1−π̂A)
nA

+ π̂B(1−π̂B)
nB

.

To conduct this test you need to

(i.) compute the observed test statistic T1,obs.

Solution:

T1,obs =
0.7− 0.6√

0.7·0.3
100

+ 0.6·0.4
500

=
0.1√

0.0021 + 4.8× 10−4
=

0.1

0.0507937
, T1,obs = 1.9687481

(ii.) state the reference distribution of T1.

Solution:

The construction of the reference distribution is over H0, with means that we considerer that don’t
exist difference between the samples (the sample proportions). For this reason in the code below
we put the samples together and randomly selected members and assume that this members are
from the population A or B, because over the null hypothesis they don’t differ.

# <code r> ===================================================================== #
samp_a <- rbinom(100, 1, .7) # sampling from population A
samp_b <- rbinom(500, 1, .6) # sampling from population B
samp <- c(samp_a, samp_b) # putting the samples together
B <- 1e4 # number of replication
# computing the test statistic
t1 <- function(prop_a, n_a, prop_b, n_b){

(prop_a - prop_b)/sqrt((prop_a*(1-prop_a))/n_a + (prop_b*(1-prop_b))/n_b)}
store <- numeric(B) # empth vector to store the test statistics
for (i in 1:B){ # generating the reference distribution

# choosing randomly the members of population A
a_i <- sample(length(samp), size = length(samp_a), replace = FALSE)
samp_ai <- samp[a_i] ; n_ai <- length(samp_ai)
# the rest go to population B
samp_bi <- samp[-a_i] ; n_bi <- length(samp_bi)
# computing proportions
prop_ai <- mean(samp_ai) ; prop_bi <- mean(samp_bi)
# computing test statistic
t1_i <- t1(prop_a = prop_ai, n_a = n_ai, prop_b = prop_bi, n_b = n_bi)
store[i] <- t1_i # storing test statistic

}
# histogram
hist(store

, xlab = "Proportion difference", main = "Reference distribution"
, las = 1, xlim = range(store)
, col = "#0080ff", border = "orange")

# </code r> ==================================================================== #
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Figure 2: Histogram of the reference distribution (10000 relications).

(iii.) identify the acceptance and rejection regions for a given probability of type I
error.

Solution:

The type I error rate or significance level is the probability of rejecting H0 given that it’s true. We
will use an type I error rate of 5%. It means, the 95-th percentile of the reference distribution. We
can see this region at red in the histogram below. To the left of the 95-th percentile we have the
acceptance region, in the right we have the rejection region.

# <code r> ===================================================================== #
hist(store

, xlab = "Proportion difference"
, main = "Reference distribution"
, las = 1
, xlim = range(store)
, col = "#0080ff"
, border = "orange")

abline(v = quantile(store, .95), col = 2, lwd = 2)
# </code r> ==================================================================== #
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Figure 3: Histogram of the reference distribution. To the left of the red line we have the acceptance
region, to the right of the red line we have the rejection region.

(iv.) decision and conclusion.

Solution:

In the histogram below we can see that the observed test statistic is in the rejection region, to the
right of the 95-th percentile. This means that we don’t accept the H0, which means that we don’t
have statistical evidence that the sample proportions are equal (statistically equal).

# <code r> ===================================================================== #
hist(store

, xlab = "Proportion difference"
, main = "Reference distribution"
, las = 1
, xlim = range(store)
, col = "#0080ff"
, border = "orange")

abline(v = quantile(store, .95), col = 2, lwd = 2)
abline(v = t1(prop_a = .7, n_a = 100, prop_b = .6, n_b = 500), col = 3, lwd = 3)
# </code r> ==================================================================== #
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Figure 4: Histogram of the reference distribution. In red we have the 95-th percentile and in green
the observed test statistic value.

(c)

Construct the table of (estimated) expected counts of patients with significant drop
under the null hypothesis H0.
Table of expected counts.

Expected count with significant drop Expected count with no significant drop
Popn A ŶA nA − ŶA
Popn B ŶB nB − ŶB

Solution:

Expected count with significant drop Expected count with no significant drop
Popn A (nA · nSD)/n = (100 · 370)/600 = 61.67 100 - 61.67 = 38.33
Popn B (nB · nSD)/n = (500 · 370)/600 = 308.33 500 - 308.33 = 191.67
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Construct the table of observed counts.
Table of observed counts.

Observed count with significant drop Observed count with no significant drop
Popn A YA nA − YA
Popn B YB nB − YB

Solution:

Observed count with significant drop Observed count with no significant drop
Popn A 70 30
Popn B 300 200

Conduct a test of the null hypothesis H0 : πA = πB using the test statistic

T2 =
(YA − ŶA)2

ŶA
+

(nA − YA − (nA − ŶA))2

(nA − ŶA)
+

(YB − ŶB)2

ŶB
+

(nB − YB − (nB − ŶB))2

(nB − ŶB)
.

To conduct this test you need to

Solution:

(i.) compute the observed test statistic T2,obs.

Solution:

T2,obs =
(70− 61.67)2

61.67
+

(100− 70− (100− 61.67))2

(100− 61.67)
+

(300− 308.33)2

308.33
+

(500− 300− (500− 308.33))2

(500− 308.33)

=
69.3889

61.67
+

69.3889

38.33
+

69.3889

308.33
+

69.3889

191.67
= 1.1251646 + 1.8103026 + 0.2250475 + 0.3620227.

T2,obs = 3.5225375.

(ii.) state the reference distribution of T2.

Solution:

The construction of the reference distribution is over H0, with means that we considerer that don’t
exist difference between the samples (the sample proportions). For this reason in the code below
we put the samples together and randomly selected members and assume that this members are
from the population A or B, because over the null hypothesis they don’t differ.

# <code r> ===================================================================== #
# first we use the same definitions that before
# samp_a <- rbinom(100, 1, .7) ; samp_b <- rbinom(500, 1, .6)
# samp <- c(samp_a, samp_b) ; B <- 1e3
t2 <- function(n_a, n_b, n_sd, y_a, y_b, n){ # computing the test statistic
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hy_a <- round((n_a*n_sd/n), 2)
hy_b <- round((n_b*n_sd/n), 2)
((y_a-hy_a)**2)/hy_a + ((n_a-y_a-(n_a-hy_a))**2)/(n_a-hy_a) +

((y_b-hy_b)**2)/hy_b + ((n_b-y_b-(n_b-hy_b))**2)/(n_b-hy_b)}
store <- numeric(B) # empth vector to store the test statistics
for (i in 1:B){ # generating the reference distribution

n <- length(samp)
a_i <- sample(n, size = length(samp_a), replace = FALSE)
samp_ai <- samp[a_i] ; n_ai <- length(samp_ai)
samp_bi <- samp[-a_i] ; n_bi <- length(samp_bi)
y_ai <- sum(samp_ai) ; y_bi <- sum(samp_bi)
n_sdi <- y_ai + y_bi
# computing test statistic
t2_i <- t2(n_a = n_ai, n_b = n_bi, n_sd = n_sdi, y_a = y_ai, y_b = y_bi, n = n)
store[i] <- t2_i}

# histogram
hist(store, xlab = "Proportion difference", main = "Reference distribution"

, las = 1, xlim = range(store), col = "#0080ff", border = "orange")
# </code r> ==================================================================== #
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Figure 5: Histogram of the reference distribution (10000 relications).
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(iii.) identify the acceptance and rejection regions for a given probability of type I
error.

Solution:

We will use an type I error rate of 5%. It means, the 95-th percentile of the reference distribution.
We can see this region at red in the histogram below.

# <code r> ===================================================================== #
hist(store

, xlab = "Proportion difference"
, main = "Reference distribution"
, las = 1
, xlim = range(store)
, col = "#0080ff"
, border = "orange")

abline(v = quantile(store, .95)
, col = 2
, lwd = 2)

# </code r> ==================================================================== #
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Figure 6: Histogram of the reference distribution. To the left of the red line we have the acceptance
region, to the right of the red line we have the rejection region.
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(iv.) decision and conclusion.

Solution:

In the histogram below we can see that the observed test statistic is in the acceptance region, to
the left of the 95-th percentile. This means that we don’t reject the H0, which means that we
don’t have statistical evidence that the sample proportions aren’t equal (statistically equal).

# <code r> ===================================================================== #
hist(store

, xlab = "Proportion difference"
, main = "Reference distribution"
, las = 1
, xlim = range(store)
, col = "#0080ff"
, border = "orange")

abline(v = quantile(store, .95), col = 2, lwd = 2)
abline(v = t2(n_a = n_ai, n_b = n_bi, n_sd = n_sdi, y_a = y_ai, y_b = y_bi, n = n)

, col = 3, lwd = 3)
# </code r> ==================================================================== #
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Figure 7: Histogram of the reference distribution. In red we have the 95-th percentile and in green
the observed test statistic value.
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(d)

Conceptual question: suppose you ”do not reject” the null hypothesis H0. Does this
mean that H0 is ”correct”?

Solution:

No. This mean that we don’t have statistical evidence against the null hypothesis H0.

(e)

Another conceptual question: suppose you ”reject” the null hypothesis H0. Does this
mean that H0 is ”wrong”?

Solution:

No. This mean that you have statistical evidence against the null hypothesis H0, in this way you
reject it. Maybe, with an smallest sample size you "don’t reject" this same hypothesis.

�
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