
UNIVERSIDADE FEDERAL DO PARANÁ

HENRIQUE APARECIDO LAUREANO

MODELING THE CUMULATIVE INCIDENCE FUNCTION OF CLUSTERED

COMPETING RISKS DATA: A MULTINOMIAL GLMM APPROACH

CURITIBA

2021

HENRIQUE APARECIDO LAUREANO

MODELING THE CUMULATIVE INCIDENCE FUNCTION OF CLUSTERED

COMPETING RISKS DATA: A MULTINOMIAL GLMM APPROACH

Dissertação apresentada ao Curso de Pós-Graduação
em Métodos Numéricos em Engenharia, Área
de Concentração em Programação Matemática:
Métodos Estátisticos, Setor de Tecnologia, Univer-
sidade Federal do Paraná, como parte das exigências
para a obtenção do tı́tulo de Mestre em Ciências.

Orientador: Prof. PhD Wagner Hugo Bonat

Coorientador: Prof. PhD Paulo Justiniano Ribeiro Jr

CURITIBA

2021

CATALOGAÇÃO NA FONTE – SIBI/UFPR

L378m

 Laureano, Henrique Aparecido

 Modeling the cumulative incidence function of clustered competing

risks data: a multinomial glmm approach [recurso eletrônico]/

Henrique Aparecido Laureano – Curitiba, 2021.

 Mestrado (Dissertação) – Programa de Pós-Graduação em Pós-

Graduação em Métodos Numéricos em Engenharia, Área de Concentração

em Programação Matemática: Métodos Estatísticos,Universidade

Federal do Paraná,

 Orientador: Prof. PhD Wagner Hugo Bonat

 Coorientador: Prof. PhD Paulo Justiniano Ribeiro Júnior

 1. Métodos numéricos. 2. Análise numérica.3. Estatística. I. Bonat,

Wagner Hugo. II. Ribeiro Júnior, Paulo Justiniano. III. Título. IV.

Universidade Federal do Paraná.

 CDD 519.5

Bibliotecária: Vilma Machado CRB9/1563

MINISTÉRIO DA EDUCAÇÃO

SETOR DE CIENCIAS EXATAS

UNIVERSIDADE FEDERAL DO PARANÁ

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO MÉTODOS NUMÉRICOS

EM ENGENHARIA - 40001016030P0

APPROVAL MINUTE

The Examining Board is designated by the Faculty of the Graduate Program of the Federal University of Paraná in MÉTODOS

NUMÉRICOS EM ENGENHARIA where invited to argue the THESIS of MASTER OF SCIENCES by HENRIQUE APARECIDO

LAUREANO , entitled: Modeling the cumulative incidence function of clustered competing risks data: A multinomial GLMM

approach, under the supervision of Dr. WAGNER HUGO BONAT, which and after assessment of the candidate and the work, the

Examining Board decided for the APPROVAL in the present rite.

The granting of the title of master of sciences is contingent upon the fulfillment of all the requirements indicated by the Examining

Board and terms determined in the regulation of the Graduate Program.

CURITIBA, September 03th, 2021.

Eletronic Signature

15/09/2021 09:32:57.0

WAGNER HUGO BONAT

President of the Examining Board

Eletronic Signature

15/09/2021 09:17:41.0

JACOB V. B. HJELMBORG

External Member (UNIVERSITY OF SOUTHERN DENMARK)

Eletronic Signature

15/09/2021 08:59:36.0

ENRICO ANTÔNIO COLOSIMO

External Member (UNIVERSIDADE FEDERAL DE MINAS GERAIS)

CESEC/TC/UFPR - Centro Politécnico - CURITIBA - Paraná - Brasil

CEP 81531-980 - Tel: (41) 3361-3218 - E-mail: ppgmne@ufpr.br

https://www.prppg.ufpr.br/siga/visitante/autenticacao.jsp - Código para autenticação: 109567

To Celita and Olivio

ACKNOWLEDGEMENTS

As Moro once said, I am thankful for everything and everyone.

We do not go up by ourselves. I am grateful to everyone that help me in
something or was patient with me in these last two years I am especially grateful to
LEG’s core for inspiring and indirectly motivating me since my bachelor’s. I am even
more especially grateful to my advisor, Professor Wagner Hugo Bonat.

”It’s not supposed to be easy.”
(Gregg Popovich)

RESUMO

Dados de riscos competitivos agrupados são um caso especial de dados de tempo de fa-
lha. Além da estrutura de grupo que implica uma dependência latente intra-grupo entre
seus elementos, esse tipo de dado é caracterizado por 1) múltiplas causas/variáveis com-
petindo para ser a responsável pela ocorrência de um evento, uma falha; e 2) censura,
quando o evento de interesse não ocorre no perı́odo de estudo, ou ocorre por uma dife-
rente causa. Para lidar com este tipo de dado, propomos um modelo linear generalizado
misto (GLMM), ou seja, um modelo de efeitos latentes/aleatórios, em vez de um modelo
de sobrevivência usual. Em análise de sobrevivência, a modelagem é usualmente feita
por meio da taxa de risco, e a acomodação da dependência intra-grupo acaba por gerar
uma complicada função de verossimilhança, às vezes intratável. Nós, por outro lado,
modelamos as causas competidoras agrupadas na escala da probabilidada, por meio
da função de incidência acumulada (CIF, em inglês) de cada causa competidora. Em
nossa modelagem, supomos uma distribuição de probabilidade multinomial para as
causas competidoras e censura, condicionado aos efeitos latentes. Os efeitos latentes são
acomodados por meio de uma distribuição Gaussiana multivariada e são modelados
via os parâmetros de sua matriz de covariância. As distribuições de probabilidade são
conectadas por meio da CIF, modeladas aqui seguindo a especificação em Cederkvist et
al. (2019), com base em sua decomposição como o produto de uma função de nı́vel de
risco instantâneo com uma função de nı́vel de tempo de trajetória. Os efeitos latentes
são inseridos nestas funções. Para tornar a estimativa dos parâmetros do modelo o mais
eficiente possı́vel, usamos o template model builder (TMB) (KRISTENSEN et al., 2016).
Com este pacote R (R Core Team, 2021), temos 1) a função de log-verossimilhança escrita
em C++; 2) acesso a eficientes bibliotecas de álgebra linear; 3) implementação eficiente
da aproximação de Laplace para os efeitos latentes; e 4) uma rotina computacional de
diferenciação automática, o estado da arte em computação de derivadas. Para verificar
a performance do modelo foi realizado um amplo estudo de simulação, baseado em
diferentes formulações de estruturas latentes, com o objetivo de verificar qual delas é
a mais adequada a um cenário real. O modelo se apresenta de difı́cil estimatição, com
nossos resultados convergindo para uma estrutura latente onde os nı́veis de risco e de
trajetória estão correlacionados. Os menores vieses nas estimativas dos paramêtros são
encontrados nos cenários de CIF alta, mas com uma excessiva variablidade, mostrando
que melhorias são necessárias.

Palavras-chave: Riscos competitivos agrupados. Dependência intra-cluster. Modelo
linear generalizado misto multinomial (MLGM). TMB: Template Model Builder.
Aproximação de Laplace. Diferenciação automática.

ABSTRACT

Clustered competing risks data is a special case of failure time data. Besides the cluster
structure which implies a latent within-cluster dependence between its elements, this
kind of data is characterized by 1) multiple causes/variables competing to be the one
responsible for the occurrence of an event, a failure; and 2) censorship, when the event
of interest does not happen in the study period, or it happens by a different cause.
To handle this type of data, we propose a generalized linear mixed model (GLMM)
i.e., a latent-effects framework, instead of a usual survival model. In survival analysis,
the modeling is usually done by means of the hazard rate, and the within-cluster
dependence accommodation ends by generating a complicated likelihood function,
sometimes intractable. We, on the other hand, model the clustered competing causes
in the probability scale, in terms of the cumulative incidence function (CIF) of each
competing cause. In our framework, we suppose a multinomial probability distribution
for the competing causes and censorship, conditioned on the latent effects. The latent
effects are accommodated via a multivariate Gaussian distribution and are modeled
by the parameters of its covariance matrix. The probability distributions are connected
via CIF, modeled here following Cederkvist et al. (2019) specification, based on its
decomposition as the product of an instantaneous risk level function with a trajectory
time level function. The latent effects are inserted in both functions. To make the model
parameters estimation the most efficient as possible, we use the template model builder
(TMB) (KRISTENSEN et al., 2016). With this R (R Core Team, 2021) package, we have 1)
the log-likelihood function written in C++; 2) access to efficient linear algebra libraries;
3) efficient Laplace approximation implementation for the latent-effects; and 4) an
automatic differentiation (AD) routine, the state-of-the-art in derivatives computation.
To check the model performance a large simulation study is performed, based on
different latent structure formulations, with the aim to verify which one is the most
adequate to real scenarios. The model presents to be of difficult estimation, with our
results converging to a latent structure where the risk and trajectory time levels are
correlated. The smallest parameter estimates biases are found in scenarios with high
CIF, but the estimates present an excessive variance, showing that improvements are
necessary.

Keywords: Clustered competing risks. Within-cluster dependence. Multinomial gener-
alized linear mixed model (GLMM). TMB: Template Model Builder. Laplace approxima-
tion. Automatic differentiation (AD).

LIST OF FIGURES

FIGURE 1 – ILLUSTRATION OF MULTISTATE MODELS FOR A A) FAIL-
URE TIME PROCESS; B) COMPETING RISKS PROCESS; AND C)
ILNESS-DEATH MODEL, THE SIMPLEST MULTISTATE MODEL 16

FIGURE 2 – A COMPUTATIONAL GRAPH . 29
FIGURE 3 – EXAMPLE OF A SIMPLE COMPUTATIONAL GRAPH 30
FIGURE 4 – R CODE FOR THE TMB IMPLEMENTATION OF A LOGISTIC

MIXED MODEL . 34
FIGURE 5 – R CODE FOR THE MODEL FITTING OF A LOGISTIC MIXED

MODEL WRITTEN IN TMB . 35
FIGURE 6 – TMB PACKAGE DESIGN . 35
FIGURE 7 – ILLUSTRATION OF COEFFICIENT BEHAVIORS FOR A GIVEN

CUMULATIVE INCIDENCE FUNCTION (CIF) (PROPOSED BY
Cederkvist et al. (2019)), IN A MODEL WITH TWO COMPETING
CAUSES OF FAILURE, WITHOUT COVARIATES, AND WITH
THE FOLLOWING CONFIGURATION: β2 = 0, u = 0 AND η = 0;
IN EACH SCENARIO ALL OTHER COEFFICIENTS ARE SET TO
ZERO, WITH THE EXCEPTION OF w1 = 1 40

FIGURE 8 – ILLUSTRATION OF A GIVEN CLUSTER-SPECIFIC CUMULA-
TIVE INCIDENCE FUNCTION (CIF), PROPOSED BY Cederkvist
et al. (2019), IN A MODEL WITH TWO COMPETING CAUSES
OF FAILURE, WITHOUT COVARIATES AND THE FOLLOWING
CONFIGURATION: β1 =−2, β2 =−1, γ1 = 1, w1 = 3 AND u2 = 0.
THE VARIATION BETWEEN FRAMES IS GIVEN BY THE LA-
TENT EFFECTS u1 AND η1 . 41

FIGURE 9 – ILLUSTRATION OF THE PARAMETRIZATION BEHAVIOR FOR
THE VARIANCE COMPONENTS, IN A), AND CORRELATION
COMPONENTS, IN B) . 45

FIGURE 10 – CUMULATIVE INCIDENCE FUNCTIONS (CIF) AND RESPEC-
TIVE DERIVATIVES (dCIF) W.R.T. TIME FOR A MODEL WITH
TWO COMPETING CAUSES OF FAILURE, WITHOUT COVARI-
ATES, LATENT EFFECTS IN ZERO, AND FIXED EFFECTS IN
Equation 4.1 . 48

FIGURE 11 – HISTOGRAMS FOR SIMULATED PROBABILITIES WITH RE-
SPECTIVE OUTPUT PCERCENTAGES AND FAILURE TIMES
FOR A MODEL WITH TWO COMPETING CAUSES AND 50000
CLUSTERS OF SIZE TWO. THE SIMULATION FOLLOWED AL-
GORITHM 1 GUIDELINES WITH PARAMETER CONFIGURA-
TIONS SPECIFIED IN Equation 4.1 AND Equation 4.2 49

FIGURE 12 – CUMULATIVE INCIDENCE FUNCTIONS (CIF) FOR A MODEL
WITH TWO COMPETING CAUSES OF FAILURE, WITHOUT
COVARIATES, AND LATENT EFFECTS IN ZERO 50

FIGURE 13 – C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM
WITH A COMPLETE 4x4 LATENT STRUCTURE 52

FIGURE 14 – PARAMETER β1 BIAS WITH ± 1.96 STANDARD DEVIATIONS . 57
FIGURE 15 – PARAMETER β2 BIAS WITH ± 1.96 STANDARD DEVIATIONS . 57
FIGURE 16 – PARAMETER γ1 BIAS WITH ± 1.96 STANDARD DEVIATIONS . 58
FIGURE 17 – PARAMETER γ2 BIAS WITH ± 1.96 STANDARD DEVIATIONS . 58
FIGURE 18 – PARAMETER w1 BIAS WITH ± 1.96 STANDARD DEVIATIONS . 59
FIGURE 19 – PARAMETER w2 BIAS WITH ± 1.96 STANDARD DEVIATIONS . 59
FIGURE 20 – PARAMETER log(σ2

1) BIAS WITH± 1.96 STANDARD DEVIATIONS 60
FIGURE 21 – PARAMETER log(σ2

2) BIAS WITH± 1.96 STANDARD DEVIATIONS 60
FIGURE 22 – PARAMETER log(σ2

3) BIAS WITH± 1.96 STANDARD DEVIATIONS 61
FIGURE 23 – PARAMETER log(σ2

4) BIAS WITH± 1.96 STANDARD DEVIATIONS 61
FIGURE 24 – PARAMETER z(ρ12) BIAS WITH ± 1.96 STANDARD DEVIATIONS 62
FIGURE 25 – PARAMETER z(ρ34) BIAS WITH ± 1.96 STANDARD DEVIATIONS 62
FIGURE 26 – PARAMETERS {z(ρ13), z(ρ24), z(ρ14), z(ρ23)} BIAS WITH ± 1.96

STANDARD DEVIATIONS . 63
FIGURE 27 – HIGH CUMULATIVE INCIDENCE FUNCTION (CIF) SCENARIO

CURVES . 64
FIGURE 28 – LOW CUMULATIVE INCIDENCE FUNCTION (CIF) SCENARIO

CURVES . 65
FIGURE 29 – VARIANCE PARAMETERS DENSITIES IN THE SCENARIOS OF

HIGH CIF AND 60 THOUSAND DATA POINTS 67
FIGURE 30 – CORRELATION PARAMETERS DENSITIES IN THE SCENARIOS

OF HIGH CIF AND 60 THOUSAND DATA POINTS 68
FIGURE 31 – COMPLETE MODEL’S PARAMETERS CORRELATION HEAT-

MAP IN THE SCENARIO OF CLUSTER SIZE 10, HIGH CIF, AND
SIXTY-THOUSAND DATA POINTS 69

FIGURE 32 – PARAMETER β1 BIAS WITH 2.5% AND 97.5% QUANTILES . . . 95
FIGURE 33 – PARAMETER β2 BIAS WITH 2.5% AND 97.5% QUANTILES . . . 95
FIGURE 34 – PARAMETER γ1 BIAS WITH 2.5% AND 97.5% QUANTILES . . . 96

FIGURE 35 – PARAMETER γ2 BIAS WITH 2.5% AND 97.5% QUANTILES . . . 96
FIGURE 36 – PARAMETER w1 BIAS WITH 2.5% AND 97.5% QUANTILES . . . 97
FIGURE 37 – PARAMETER w2 BIAS WITH 2.5% AND 97.5% QUANTILES . . . 97
FIGURE 38 – PARAMETER log(σ2

1) BIAS WITH 2.5% AND 97.5% QUANTILES 98
FIGURE 39 – PARAMETER log(σ2

2) BIAS WITH 2.5% AND 97.5% QUANTILES 98
FIGURE 40 – PARAMETER log(σ2

3) BIAS WITH 2.5% AND 97.5% QUANTILES 99
FIGURE 41 – PARAMETER log(σ2

4) BIAS WITH 2.5% AND 97.5% QUANTILES 99
FIGURE 42 – PARAMETER z(ρ12) BIAS WITH 2.5% AND 97.5% QUANTILES . 100
FIGURE 43 – PARAMETER z(ρ34) BIAS WITH 2.5% AND 97.5% QUANTILES . 100
FIGURE 44 – PARAMETERS {z(ρ13), z(ρ24), z(ρ14), z(ρ23)} BIAS WITH 2.5%

AND 97.5% QUANTILES . 101

LIST OF ALGORITHMS

ALGORITHM 1 SIMULATING FROM A multiGLMM FOR CLUSTERED
COMPETING RISKS DATA . 47

CONTENTS

1 INTRODUCTION . 15

1.1 GOALS . 19

1.1.1 General goals . 19

1.1.2 Specific goals . 20

1.2 JUSTIFICATION . 20

1.3 LIMITATION . 21

1.4 THESIS ORGANIZATION . 21

2 GENERALIZED LINEAR MIXED MODELS: FORMULATION, OPTIMIZA-

TION, AND IMPLEMENTATION . 22

2.1 FORMULATION: OBTAINING A JOINT LIKELIHOOD FUNCTION 22

2.2 MARGINALIZATION: LAPLACE APPROXIMATION AND ALTERNATIVES . . 23

2.3 OPTIMIZATION: MARGINAL LIKELIHOOD FUNCTION 26

2.4 AD: AUTOMATIC DIFFERENTIATION . 28

2.4.1 Forward Mode . 30

2.4.2 Reverse Mode . 31

2.5 TMB: TEMPLATE MODEL BUILDER . 32

3 multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING

RISKS DATA . 37

3.1 CLUSTER-SPECIFIC CUMULATIVE INCIDENCE FUNCTION (CIF) 37

3.2 MODEL SPECIFICATION . 41

3.2.1 Parametrization . 43

4 SIMULATION STUDIES . 47

4.1 SIMULATING FROM THE MODEL . 47

4.2 SIMULATION STUDIES DESIGN . 50

5 RESULTS . 55

5.1 SIMULATION STUDY . 55

6 DISCUSSION . 70

6.1 ADDITIONAL CONSIDERATIONS . 73

6.2 FUTURE WORKS . 73

BIBLIOGRAPHY . 75

APPENDIX 80

APPENDIX . 81

APPENDIX A – ANALYTIC GRADIENT OF THE LATENT EFFECTS FOR

THE JOINT LOG-LIKELIHOOD FUNCTION OF THE

MULTINOMIAL GLMM FOR CLUSTERED COMPETING

RISKS DATA . 81

APPENDIX B – ANALYTIC HESSIAN OF THE LATENT EFFECTS FOR

THE JOINT LOG-LIKELIHOOD FUNCTION OF THE

MULTINOMIAL GLMM FOR CLUSTERED COMPETING

RISKS DATA . 82

APPENDIX C – R CODE TO SIMULATE FROM A multiGLMM WITH TWO

COMPETING CAUSES AND CLUSTERS OF SIZE TWO.

FOR MORE INFORMATION CHECK SECTION 4.1 86

APPENDIX D – C++ CODES FOR THE TMB IMPLEMENTATION OF THE

multiGLMM COMPLETE MODEL’S SPECIAL CASES . . . 88

D.1 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A

2× 2 LATENT STRUCTURE ON THE RISK LEVEL 88

D.2 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A

2× 2 LATENT STRUCTURE ON THE TRAJECTORY TIME LEVEL 89

D.3 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A

BLOCK-DIAG 4× 4 LATENT STRUCTURE 91

D.4 R CODE SHOWING HOW TO LOAD AND FIT THE multiGLMM VERSIONS . 92

APPENDIX E – MODEL PARAMETERS BIAS WITH 2.5% AND 97.5%

QUANTILES . 95

15

1 INTRODUCTION

Consider a cluster of random variables representing the time until the occur-
rence of some event. These random variables are assumed to be correlated, i.e. for
some biological or environmental reason it is not adequate to assume independence
between them. Also, we may be interested in the occurrence of not only one specific
event, having in practice a competition of events to see which one happens first, if it
happens. Such events may also be of low probability albeit severe consequences, this
is the moment when the cluster correlation makes its difference: the occurrence of an
event in a cluster member should affect the probability of the same happening in the
others.

A realistic context that fits perfectly with the framework described above is
the study of disease incidence in family members, where each member is indexed by a
random variable and each cluster consists of a familiar structure. More specifically, we
are interested in what is called family studies. Besides the dependence between family
members, this kind of data is characterized by being consisted of big samples, or even a
population, and having a lot of clusters/families of small size. The inspiration to these
kinds of problems came from the work developed in Cederkvist et al. (2019), where
they studied breast cancer incidence in mothers and daughters but using a nontrivial
estimation framework. Based on that, the aim of this thesis is to propose a simpler
estimation framework taking advantage of several state-of-art computational libraries
and see how far we can go in several scenarios. Until now we have just contextualized,
we still need to introduce the methodology. To do this, some definitions and theoretical
contexts are welcome.

When the object under study is a random variable representing the time until
some event occurs, we are in the field of failure time data (KALBFLEISCH; PRENTICE,
2002). The occurrence of an event is generally denoted failure, and major areas of appli-
cation are biomedical studies and industrial life testing. In this thesis, we maintain our
focus on the former. As common in science, same methodologies can receive different
names depending on the area. In industrial life testing is performed what is called a
reliability analysis; in biomedical studies is performed what is called survival analysis.
Generally, the term survival is applied when we are interested in the occurrence of only
one event, a failure time process. When we are interested in the occurrence of more than
one event we enter in the yard of competing risks and multistate models. A visual aid is
presented on Figure 1 and a comprehensive reference is Kalbfleisch & Prentice (2002).

Failure time and competing risks processes may be seen as particular cases of a
multistate model. Besides the number of events (states) of interest, the main difference

16

between a multistate model and its particular cases is that only in the multistate scenario
we may have transient states, using a stochastic process language. In the particular cases,
all states besides the initial state 0, are absorbents - once you reached it you do not leave.
The simplest multistate model that exemplify this behavior is the illness-death model,
Figure 1 C), where a patient (initially in state 0) can get sick (state 1) or die (state 2); if
sick it can recover (returns to state 0) or die. We work in this thesis only with competing
risks processes, and for each patient we need the time (age) until the occurrence, or not,
of the event.

FIGURE 1 – ILLUSTRATION OF MULTISTATE MODELS FOR A A) FAILURE TIME PRO-
CESS; B) COMPETING RISKS PROCESS; AND C) ILNESS-DEATH MODEL, THE
SIMPLEST MULTISTATE MODEL

0 1
A) B)

1

2

...

m

0
C)

0 2

1

SOURCE: The author (2021).

When for some known or unknown reason we are not able to see the occurrence
of an event, we have what is denoted censorship. Still in the illness-death model, during
the period of follow up the patient may not get sick or die, staying at state 0. This is
denoted right-censorship; if a patient is in state 1 at the end of the study, we are censored to
see him reaching the state 2 or returning to state 0. This is the inherent idea to censorship
and must be present in the modeling framework, thus arriving in the so-called survival
models (KALBFLEISCH; PRENTICE, 2002).

A survival model deals with the survival experience. Usually, the survival
experience is modeled in the hazard (failure rate) scale and it can be expressed for a
subject i as

λ(t | xi) = λ0(t)× c(xiβ) at time t, (1.1)

i.e. as the product of an arbitrary baseline hazard function λ0(·), with a specific function
form c(·), that will depend on the probability distribution to be chosen for the failure
time and on predictors/covariates/explanatory/independent variables xi = [x1 . . . xp],
where β> = [β1 . . . βp] is the parameters vector.

17

This structure is specified for a failure time process, as in Figure 1 A). Nev-
ertheless, the idea is easy to extend. We basically have the Equation 1.1’s model to
each cause-specific (in a competing risks process) or transition (in a multistate process).
For competing risks, the probable most famous approach is the Fine & Gray (1999)
subdistribution model. A complete and extensive detailing can be, again, found in
Kalbfleisch & Prentice (2002).

In this work we approach the case of clustered competing risks. Besides the
cause-specific structure, we have to deal with the fact that the events are happening
in related individuals. This configures what is denoted family studies, i.e. we have a
cluster/group/family dependence that needs to be considered, accommodated, and
modeled. This, possible, dependence is something that we do not actually measure but
know (or just suppose) that exists. In the statistical modeling language this characteristic
receives the name of random or latent effect.

A survival model with a latent effect, association, or unobserved heterogeneity,
is denoted frailty model (CLAYTON, 1978; VALPEL; MANTON; STALLARD, 1979;
LIANG et al., 1995; PETERSEN, 1998). In its simplest form, a frailty is an unobserved
random proportionality factor that modifies the hazard function of an individual, or of
related individuals. Frailty models are extensions of Equation 1.1’s model, and its use
implies challengeable likelihood functions (statistical objective functions) and inference
routines done via elaborated and slow expectation–maximization (EM) algorithms
(NIELSEN et al., 1992; KLEIN, 1992) or inefficient Markov chain Monte Carlo (MCMC)
schemes (HOUGAARD, 2000). With multiple survival experiences, the general idea
is the same but with even more challengeable likelihoods (PRENTICE et al., 1978;
LARSON; DINSE, 1985; KUK, 1992; THERNEAU; GRAMBSCH, 2000).

In the competing risks setting, the hazard scale (focusing on the cause-specific
hazard) is not the only possible scale to work on. A more attractive possibility is to
work on the probability scale (ANDERSEN et al., 2012), focusing on the cause-specific
cumulative incidence function (CIF). Besides the within-family dependence, in family
studies there is often a strong interest in describing age at disease onset, which is
directly described by the cause-specific CIF. The CIF is the cumulative probability of
experiencing a failure by a given competing cause along the time. Therefore, making the
probability scale a more attractive and logical choice. Since the CIF plays a central role
in this master thesis, it will be formally defined later in a place with greater emphasis.

Besides the CIF specification itself, the known works with clustered compet-
ing risks data in the probability scale, differ in terms of likelihood construction and
parameters estimation routines. There is a lack of methodology predominance in the
literature, but with its majority being designed for bivariate CIFs, where increasing the
CIF’s dimension is a limitation. Some of the existing options are

18

• Nonparametric approaches (CHENG; FINE; KOSOROK, 2007; CHENG; FINE;
KOSOROK, 2009);

• Linear transformation models (FINE, 1999; GERDS; SCHEIKE; ANDERSEN, 2012);

• Semiparametric approaches based on

– Composite likelihoods (SHIH; ALBERT, 2009; CEDERKVIST et al., 2019);

– Estimating equations (CHENG; FINE, 2012; SCHEIKE; SUN, 2012);

– Copula models (SCHEIKE; ZHANG; JENSEN, 2010);

– Mixture models (NASKAR; DAS; IBRAHIM, 2005; SHI; CHENG; JEONG,
2013).

With the definitions and the theoretical context being made, let us be more
specific. To work with competing risks data on the probability scale plus a latent
structure allowing for within-cluster dependence of both risk and timing, Cederkvist et
al. (2019) proposed a pairwise composite likelihood approach based on the factorization
of the cause-specific CIF as the product of a cluster-specific risk level function with a
cluster-specific failure time trajectory function. A composite approach (LINDSAY, 1988;
COX; REID, 2004; VARIN; REID; FIRTH, 2011) is a valid alternative to a full likelihood
analysis in high-dimensional situations when a full approach is too computational costly
or even inviable. A clear advantage of this approach is that we do not need to care about
a joint distribution specification, which generally translates also into a computational
advantage. A disadvantage is the likelihood function specification, which becomes
much more challengeable, besides the number of small details to workaround from the
fact of being working with not an exact likelihood function.

We do not have any guarantees that a full likelihood inference procedure is
not viable here, so we try to reach the same goal of Cederkvist et al. (2019) albeit with
a simpler maximum likelihood estimation framework taking advantage of state-of-art
software, something still not so common in the statistical modeling community. This
simpler framework is based on a generalized linear mixed model (GLMM). Instead of
concentrating on failure time data and consequently having a survival/frailty model
based on the hazard scale, or using a composite approach (or any other of the options
listed above), we just build the joint/full likelihood function (a multinomial model
with its link function based on the cluster-specific CIF, accouting for an appropriate
latent effects structure), marginalize (integrate out the latent effects) and optimize it. A
Fisherian approach per se.

In a standard linear model we assume that the response variable Yi, conditioned
on the covariates xi, follows a normal/Gaussian distribution and what we do is to
model its mean, µi ≡ E(Yi | xi), via a linear combination. As much well explained in

19

Nelder & Wedderburn (1972), with the aid of a link function g(·), this idea is generalized
to distributions of the exponential family. Many of its members are useful for practical
modelling, such as the Poisson (for counting data), binomial (dichotomic data), gamma
(continuous but positive) and Gaussian (continuous data) distributions. This extended
framework received the name of generalized linear models (GLMs) (NELDER; WED-
DERBURN, 1972), and is probably the most popular statistical modelling framework. A
comprehensive reference is McCullagh & Nelder (1989).

Despite its flexibility, the GLMs are not suitable for dependent data. For the
analysis of such data, Laird & Ware (1982) proposed the random effects regression
models for longitudinal/repeated-measures data analysis. Breslow & Clayton (1993)
presented the GLMMs for the analysis of non-Gaussian outcomes. What makes a GLM
into a GLMM is the addition of a latent effect u (then, mixed) into the mean structure.
The mean structure of a standard GLMM for a subject i is defined as

g(µi) = xiβ + ziu, u ∼Multivariate Normal(0,Σ)

where the latent effect is assumed to follow a multivariate Gaussian distribution of
zero mean and a parametrized variance-covariance matrix Σ. Its correct linkage to the
mean structure is made through the ith vector row of a design-matrix Z. The covariates
are into xi, the ith vector row of a model-matrix X, with β being a vector of unknown
parameters.

In the GLMM framework (MCCULLOCH; SEARLE, 2001), we can accommo-
date all competing causes of failure and censorship with a multinomial probability
distribution, easily extend to any number of competing causes. The within-cluster
dependence is accommodated via the latent effect and the cause-specific CIFs via the
model’s link function. The estimation and inference are done via an efficient implemen-
tation and state-of-art computational libraries provided through the R (R Core Team,
2021) package TMB (KRISTENSEN et al., 2016). The latent effects are handled out by
means of an efficient Laplace approximation (WOOD, 2015; BONAT; RIBEIRO-JR, 2016)
and automatic differentiation (AD) (WOOD, 2015; PEYRé, 2020) routines.

1.1 GOALS

1.1.1 General goals

Propose and evaluate a maximum likelihood estimation approach of a multino-
mial generalized linear mixed model (multiGLMM) to the cluster and cause-specific
cumulative incidence function (CIF) of clustered competing risks data.

20

1.1.2 Specific goals

1. Simulate from the model, i.e. generate synthetic data to study statistical properties.

2. Write the model in the Template Model Builder (TMB) software, developed by
Kristensen et al. (2016) and possibly the most efficient likelihood-based way of
doing such task.

3. Take advantage of TMB’s functionalities with special attention to the computa-
tion of gradients and Hessians via a state-of-art automatic differentiation (AD)
implementation; and a joint likelihood marginalization via an efficient Laplace
approximation routine.

4. Assess the maximum likelihood estimation method embedded on TMB. Check
its properties in our model for different complexity level in terms of parametric
space and latent effect structures.

5. Make exact likelihood-based inference to the cluster and cause-specific CIF of
clustered competing risks data.

1.2 JUSTIFICATION

In the biomedical statistical modeling literature, the study of disease occurrence
in related individuals receives the name of family studies. Key points of interest are
the within-family dependence and determining the role of different risk factors. The
within-family dependence may reflect both disease heritability and the impact of shared
environmental effects. The role of different risk factors arrives in the class of multivariate
models, which options are limited in the statistical literature. Thus, the number of
statistical models for competing risks data that accommodate the within-cluster/family
dependence is even more limited. Some modeling options are briefly commented in
Cederkvist et al. (2019), with his pairwise composite approach being proposed as a
new and better option to model the cause-specific cumulative incidence function (CIF),
describing age at disease onset, of clustered competing risks data on the probability
scale. We propose to model the cause-specific CIF and accommodate the within-family
dependence in the same fashion (via a latent structure that allows the absolute risk and
the failure time distribution to vary between families) but with an easier estimation
framework, based on a full-likelihood approach of a multinomial generalized linear
mixed model.

21

1.3 LIMITATION

This work restraint to the proposition and maximum likelihood estimation
method evaluation of a multinomial model for the cause-specific cumulative incidence
function (CIF) of competing risks data in the context of family studies, with a latent
effect structure to accommodate within-family dependence with regard to both risk
and timing. Family studies are characterized by a considerable amount of clusters
(families) but with each one having a small number of elements. Given its considerable
model complexity, hypothesis tests; residual analysis; and good-of-fit measures are not
contemplated.

1.4 THESIS ORGANIZATION

This master thesis contains 6 chapters including this introduction. Chapter 2
presents a systematic review of the main aspects involved in the formulation, optimiza-
tion, and implementation of a generalized linear mixed model (GLMM). Given the mod-
eling framework overview, Chapter 3 presents our multinomial GLMM (multiGLMM)
to model the cause-specific cumulative incidence function (CIF) of clustered competing
risks data. In Chapter 4 we describe the simulation procedure to generate synthetic
data and present some model particularities. In Chapter 5 the obtained results are
presented, and in Chapter 6 we discuss the contributions of this thesis and present some
suggestions for future work.

22

2 GENERALIZED LINEAR MIXED MODELS: FORMULATION, OPTIMIZA-

TION, AND IMPLEMENTATION

This chapter presents a review of the main theoretical aspects involved in the
formulation, estimation, and implementation of a generalized linear mixed model
(GLMM). We start in Section 2.1 with the model formulation framework, concluding
with the so-called joint or full likelihood function. Section 2.2 address the marginal-
ization of that joint likelihood, performed here in terms of a Laplace approximation
technique. Section 2.3 discusses available alternatives for the marginal likelihood pa-
rameters optimization. Section 2.4 present the automatic differentiation (AD) procedure,
the most efficent routine for the computation of derivatives, and a key point for us. Last
but not least, in Section 2.5 we present the computational tool used for the discussed
methodology, a very exciting R (R Core Team, 2021) package called TMB: Template
Model Builder, developed by Kristensen et al. (2016).

2.1 FORMULATION: OBTAINING A JOINT LIKELIHOOD FUNCTION

We model an n-vector of exponential family random variables Y , in terms of
its conditional expected value µ ≡ E(Y | X,u), via a linear combination called of linear
predictor and generally expressed by

g(µ) = Xβ + Zu, u ∼Multivariate Normal(0,Σ). (2.1)

In other words, a GLMM (MCCULLOCH; SEARLE, 2001) is a generalized linear model
(GLM) in which the linear predictor depends on some Gaussian latent effects, u, times a
latent effects design-matrix Z. Since we do not observe the latent component, an exem-
plification of the idea embedded in matrix Z is welcome. Suppose e.g., three individuals
(or clusters) and that each one has two measures. This configures a repeated measures
context, the most common latent structure in family studies. Also, it is reasonable to
admit that each individual has its particular latent effect value. Consequently, we have

Zu =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

u1

u2

u3

 =

u1

u1

u2

u2

u3

u3

,

where u> = [u1 u2 u3] and Z has the role of projecting the values of u to match the
number of measures.

23

In a mixed model the mean structure is approached as a combination of proba-
bility distributions. It is a combination since we have to assume probabilistic structures
for the observed and non-observed/latent data. To each observed variable yij we have a
probability distribution of the exponential family, denoted by f (yij | ui,θ). To the latent
effect we have, generally, a (multivariate) Gaussian distribution, denoted by f (ui | Σ).
To each individual or unity under study i, and to each measure j, we have the product
of these probability densities, a likelihood contribution.

Our goal is to estimate the parameter vector θ = [β Σ]> of a mean structure, as
in Equation 2.1. Besides the role of emphasizing the fact that µ is a function of θ, and
that we want to estimate θ, the likelihood function ties the probability densities i.e., the
likelihood is the product of the product of probability densities, to each subject i. Since
Yi are mutually independent, the likelihood for θ can be written as

L(θ | y,u) =
I

∏
i=1

ni

∏
j=1

f (yij | ui, β,Σ) f (ui | Σ). (2.2)

From standard probability theory is easy to see that in the right-hand side (r.h.s.) we
have a joint density, consequently, Equation 2.2 represents what is called a full or a joint
likelihood function. What makes problematic working with this joint likelihood is that
we do not have all the necessary information to just maximize it and get the desired
parameter estimates. The latent effect u is latent i.e., we do not observe it. To handle this
we have basically two available paths.

2.2 MARGINALIZATION: LAPLACE APPROXIMATION AND ALTERNATIVES

To deal with a joint likelihood function as in Equation 2.2 we have a choice to
make. Be or not to be Bayesian. Each choice has its own difficulties, advantages, and
characteristics.

The Bayesian path assumes that all θ components are random variables. With
all parameters being treated as random variables, and since we do not observe them,
what the Bayesian framework does is try to compute the mode of each “parameter”
marginal distribution, generally, via a sampling algorithm called MCMC: Markov chain
Monte Carlo (GELFAND; SMITH, 1990; DIACONIS, 2009).

The advantage of being Bayesian is that we can reach an MCMC algorithm
to basically any statistical model, the disadvantage is that this approach is very time
consuming and we have to propose prior distributions to each “parameter”. These
prior proposals are not always easy to make, and the resulting marginal distributions
can be very depending of it. A Bayesian approach can be applied in basically any
context, without guarantees that will work - obtain convergence to all parameters is not

24

a straightforward task. However, in complex scenarios they can be the only available
method to “maximize” the likelihood function. This is not the case here.

We have a joint density where one of the random variables is not observed,
but we are not interested in it, only in the variance parameters inherent in it. Again,
from standard probability theory, if we have a joint density we can just integrate out the
undesired variable resulting in

L(θ | y) =
I

∏
i=1

∫
Rui

[
ni

∏
j=1

f (yij | ui, β,Σ) f (ui | Σ)
]

dui

=
I

∏
i=1

∫
Rui

f (yi,ui | θ) dui,

(2.3)

a marginal density that keeps the parameters Σ of the integrated variable.

When the response distribution of a mixed model is Gaussian, is analytically
tractable to integrate u out of the joint density. Consequently, it is possible to evaluate
the marginal likelihood exactly. This is the case of the linear mixed models (LMMs)
and one of the main differences to the GLMMs. When the response distribution is not
Gaussian, generally, it is not anymore analytically tractable to integrate out the latent
effect. So what do we do? Well, we have basically two options again.

We can avoid the integrals in Equation 2.3, replacing it by integrals that are
tractable. This can be performed via an algorithm called Expectation-Maximization
(EM), proposed by Dempster, Laird & Rubin (1977). This approach is considered a
little bit naive and generally is not recommended if you have a better option. The
other option consists of performing a numerical integration i.e., approximating the
integral. The most common way of doing that in the statistical modeling literature is
via an importance sampling version of the Gaussian quadrature rule, denoted adaptive
Gaussian quadrature (AGQ) (PINHEIRO; CHAO, 2006). In general, adaptive Gaussian
quadratures are not so simple to use (computationally expensive; we have to choose
how many integration points will be used; and we also have to choose an importance
distribution to approximate the integrand).

To us, the better option consists in take advantage of the exponential family
structure together with the fact that we are dealing with Gaussian latent effects. These
ideas converge to an adaptive Gaussian quadrature with one integration point, also
called as Laplace approximation (MOLENBERGHS; VERBEKE, 2005; SHUN; MCCUL-
LAGH, 1995; TIERNEY; KADANE, 1986; WOOD, 2015).

With an integral that is analytically intractable, we may approximate it to obtain
a tractable closed-form expression allowing the numerical maximization of the resulting
marginal likelihood function (BONAT; RIBEIRO-JR, 2016). The Laplace approximation

25

has been designed to approximate integrals in the form∫
Rui

exp{Q(ui)}dui ≈ (2π)nu/2 |Q′′(ûi)|−1/2 exp{Q(ûi)}, (2.4)

where Q(ui) is a known, unimodal bounded function, and ûi is the value for which
Q(ui) is maximized. As Wood (2015) shows, a Laplace approximation consists of a
second order Taylor expansion of log f (yi,ui | θ), about ûi, that gives

log f (yi,ui | θ) ≈ log f (yi, ûi | θ)−
1
2
(ui − ûi)

>H (ui − ûi),

where H = −∇2
u log f (yi, ûi | θ). Hence, we can approximate the joint by

f (yi,ui | θ) ≈ f (yi, ûi | θ) exp
{
−1

2
(ui − ûi)

>H (ui − ûi)

}
. (2.5)

From here we start to take advantage of the points mentioned above.

First, the fact that we are dealing with Gaussian distributed latent effects. In
Equation 2.5 we have the core of a Gaussian density, that complete is∫

Rui

1
(2π)nu/2 |H−1|1/2 exp

{
−1

2
(ui − ûi)

>H (ui − ûi)

}
dui = 1

i.e., integrates to 1. Integrating Equation 2.5 follows that∫
Rui

f (yi,ui | θ) dui ≈ f (yi, ûi | θ)
∫
Rui

exp
{
−1

2
(ui − ûi)

>H (ui − ûi)

}
dui

= (2π)nu/2 |H|−1/2 f (yi, ûi | θ)

i.e., we get Equation 2.4, a first order Laplace approximation to the integral. Careful
accounting of the approximation error shows it to generally be O(n−1), where n is the
sample size, and assuming a fixed length for ui (WOOD, 2015).

The second advantage of a Laplace approximation approach in a GLMM is the
exponential family structure. In a usual GLMM the response follows a one-parameter
exponential family distribution that can be written as

f (yi | ui,θ) = exp
{

y>i (xiβ + ziui)− 1>i b(xiβ + ziui) + 1>i c(yi)
}

,

where b(·) and c(·) are known functions.

This general and easy to compute expression, together with a (multivariate)
Gaussian distribution, highlights the convenience of the Laplace method. The Q(ui)

function to be maximized can be expressed as

Q(ui) = y>i (xiβ + ziui)− 1>i b(xiβ + ziui) + 1>i c(yi)

− nu

2
log(2π)− 1

2
log |Σ| − 1

2
u>i Σ−1 ui.

(2.6)

26

The approximation in Equation 2.4 requires the maximum ûi of the function Q(ui). As
we assume a Gaussian distribution with a known mean for the latent effects, we have the
perfect initial guess for a Hessian-based maximization method, as the Newton-Raphson
(NR) algorithm.

The NR method consists of an iterative scheme as follows:

u(k+1)
i = u(k)

i −Q′′(u(k)
i)−1 Q′(u(k)

i), k = 0, 1, . . .

until convergence, which gives ûi. At this stage, all parameters θ are considered known.
Bonat & Ribeiro-Jr (2016) presents the generic expressions for the derivatives required
by the NR method, given by the following:

Q′(u(k)
i) = {yi − b′(xiβ + ziu

(k)
i)}> − u(k)

i

>
Σ−1,

Q′′(u(k)
i) = −diag{b′′(xiβ + ziu

(k)
i)} − Σ−1.

We have the initial guesses at k = 0.

Finally, the marginal log-likelihood function returned by the Laplace approxi-
mation, to each individual or unit under study i, is as follows:

l(θ | yi) = log L(θ | yi) =
n
2

log(2π)− 1
2

log
∣∣∣diag{b′′(xiβ + ziûi)}+ Σ−1

∣∣∣
+ y>i (xiβ + ziûi)− 1>i b(xiβ + ziûi) + 1>i c(yi)

− nu

2
log(2π)− 1

2
log |Σ| − 1

2
û>i Σ−1 ûi,

that can now be numerically maximized over the model parameters θ = [β Σ]>.

2.3 OPTIMIZATION: MARGINAL LIKELIHOOD FUNCTION

At this point it is already clear that we have two optimizations to be performed,
an “inside” and an “outside” optimization. The inside one is made into the Laplace
approximation layer via a Newton-Raphson algorithm, a Newton’s method. The outside
optimization is made with the Laplace approximation outputs i.e., the maximization
of Equation 2.3’s marginal log-likelihood over its parameters θ. This task is usually
performed via a quasi-Newton method, we focus on two of the most traditional ones:
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the PORT routines.

The inside optimization is the numerical maximization of the joint log-
likelihood with respect to (w.r.t.) its latent effects. This is kind of a simple task since all
model parameters are considered as fixed, and we “know” that the latent effects are
distributed with zero mean i.e., we have the perfect initial guess. In this context, the use
of a Newton’s method is straightforward. When we talk about the outside optimization

27

it is a completely different scenario, it is not straightforward to find a good initial guess
or reach convergence. Thus, more robust methods are a good choice.

In optimization, Newton methods are algorithms for finding local maxima
and minima of functions i.e., the search for the zeroes of the gradient of that function.
Newton methods are characterized by the use of a symmetric matrix of function’s
second derivatives, the Hessian matrix. Quasi-Newton methods are based on Newton’s
method and are seen as an alternative to it. They can be used if the Hessian is unavailable
or if is too expensive to compute it at every iteration.

As shown in Nocedal & Wright (2006), major advantages of quasi-Newton
methods over Newton’s method are that the Hessian matrix does not need to be com-
puted, it is approximated; and it also does not need to be inverted. Newton’s method
requires the Hessian to be inverted, typically by solving a system of linear equations -
often quite costly. In contrast, quasi-Newton methods usually generate an estimate of it
directly. As in Newton’s method, they use a second-order approximation to find the
minimum of a function f (x). The Taylor series of f (x) around an iterate is

f (xk + ∆x) ≈ f (xk) +∇ f (xk)
>∆x +

1
2

∆x>B ∆x,

where∇ f (·) is the gradient, and B an approximation to the Hessian matrix. The gradient
of this approximation w.r.t. ∆x is

∇ f (xk + ∆x) ≈∇ f (xk) + B ∆x,

setting this gradient to zero provides the Newton step:

∆x = −B−1∇ f (xk).

The Hessian approximation B is chosen to satisfy

∇ f (xk + ∆x) =∇ f (xk) + B ∆x,

which is called the secant equation i.e., the Taylor series of the gradient itself. Solving
for B and applying the Newton’s step with the updated value is equivalent to the secant
method. Quasi-Newton methods are a generalization of the secant method to find the
root of the first derivative for multidimensional problems. The various quasi-Newton
methods differ in their choice of the solution to the secant equation.

In a general quasi-Newton method, the unknown xk is updated applying the
Newton’s step calculated using the current approximate Hessian matrix Bk in the
following fashion:

• ∆xk =−αkB−1
k ∇ f (xk), with α chosen to satisfy some sufficient decrease and curva-

ture conditions collectively known as the Wolfe conditions (NOCEDAL; WRIGHT,
2006, p. 34);

28

• xk+1 = xk + ∆xk;

• The gradient computed at the new point ∇ f (xk+1), and yk =∇ f (xk+1)−∇ f (xk)

is used to update the approximate Hessian Bk+1, or directly its inverse Hk+1 =

B−1
k+1.

The most popular quasi-Newton method is the BFGS algorithm, named after its
inventors, Broyden, Fletcher, Goldfarb, and Shanno. It has the following update formula

Bk+1 = Bk +
yky>k

y>k ∆xk
− Bk∆xk(Bk∆xk)

>

∆x>k Bk∆xk
,

Hk+1 = B−1
k+1 =

(
I −

∆xky>k
y>k ∆xk

)
Hk

(
I −

yk∆x>k
y>k ∆xk

)
+

∆xk∆x>k
y>k ∆xk

.

Another quasi-Newton method popular in the statistical modeling literature, is the
one based on the PORT routines 〈http://www.netlib.org/port/〉. It is a Fortran math-
ematical subroutine library designed to be portable over different types of computers,
developed by David Gay in the Bell Labs (GAY, 1990). It is a quasi-Newton adaptive
nonlinear least-squares algorithm (DENNIS; GAY; WELSCH, 1981) with the following
update formula

Bk+1 = Bk

+
(yk − Bk∆xk)∆x>k Bk + Bk∆xk (yk − Bk∆xk)

>

∆x>k Bk∆xk

−
∆x>k (yk − Bk∆xk)Bk∆xk∆x>k Bk(

∆x>k Bk∆xk
)>∆x>k Bk∆xk

.

As Nocedal & Wright (2006) points out, each quasi-Newton method iteration can be
performed at a cost of O(n2) arithmetic operations (plus the cost of function and
gradient evaluations); there are no O(n3) operations such as linear system solves or
matrix-matrix operations. In the BFGS algorithm is known that the rate of convergence
is superlinear, which is a valid assumption to any quasi-Newton method and is fast
enough for most practical purposes. Even though Newton’s method converges more
rapidly, quadratically, its cost per iteration usually is higher because of its need for
second derivatives and solution of a linear system.

In this thesis, the used BFGS implementation is the one in the R (R Core Team,
2021) function base::optim(), and the PORT routine used is the one implemented in
the R function base::nlminb().

2.4 AD: AUTOMATIC DIFFERENTIATION

The computation of gradients, ∇ f (x), are a fundamental and crucial task but
also the main computational bottleneck to any Newton and quasi-Newton method.

http://www.netlib.org/port/

29

We choose to use the most efficient manner of computing gradients, and one of the
best scientific computing techniques but still not so famous in the statistical modeling
literature, the automatic differentiation (AD) procedure. AD has two modes, the so-called
forward and reverse mode. We will talk a bit about both but we will use only the reverse
mode. The reason can be illustraded by a simple example, given later.

Automatic differentiation, also called algorithmic differentiation or computa-
tional differentiation, is a set of techniques to numerically and recursively evaluate the
derivative of a function specified by a computer program. AD techniques are based on
the observation that any function, no matter how complicated, is evaluated by perform-
ing a sequence of simple elementary operations involving just one or two arguments at
a time. Derivatives of arbitrary order can be computed automatically, automatized and
accurately to working precision. Most of the information in this section was taken of
Peyré (2020), but Wood (2015, p. 120) and Nocedal & Wright (2006, p. 204) are also very
good references.

The most common differentiation approaches are finite differences (FD) and
symbolic calculus. Considering a function f : Rp→R and the goal of deriving a method
to evaluate ∇ f : Rp→Rp, the approximation of this vector field via FD would require
p + 1 evaluations of f . The same task via reverse mode AD has in most cases a cost
proportional to a single evaluation of f . AD is similar to symbolic calculus in the sense
that it provides an exact gradient computation, up to machine precision. However,
symbolic calculus does not takes into account the underlying algorithm which compute
the function, while AD factorizes the computation of the derivative according to an
efficient algorithm. The use of AD is inherent to the use of a computational graph, as
exemplified in Figure 2.

FIGURE 2 – A COMPUTATIONAL GRAPH

SOURCE: Peyré (2020, p. 31).

Assuming that f is implemented in an algorithm, the goal is to compute the

30

derivatives

∂ f (x)
∂xk

∈Rnt×nk ,

for a numerical algorithm (succession of functions) of the form

∀ k = s + 1, . . . , t, xk = fk(x1, . . . , xk−1),

where fk is a function which only depends on the previous variables. The computational
graph as in Figure 2, has the role of represent the linking of the variables involved in fk

to xk. The evaluation of f (x) corresponds to a forward traversal of this graph.

Now, how we evaluate f through the graph? Via one of the AD modes.

2.4.1 Forward Mode

The forward mode correspond to the usual way of computing differentials. The
method initialize with the derivative of the input nodes

∂x1

∂x1
= Idn1×n1 ,

∂x2

∂x1
= 0n2×n1 ,

∂xs

∂x1
= 0ns×n1 ,

and then iteratively make use of the following recursion formula

∀ k = s + 1, . . . , t,
∂xk
∂x1

= ∑
l ∈ father(k)

∂xk
∂xl
× ∂xl

∂x1
= ∑

l ∈ father(k)

∂

∂xl
fk(x1, . . . , xk−1)×

∂xl
∂x1

.

The notation “father(k)” denotes the nodes l < k of the graph that are connected to k.
We make use of Peyré (2020, p. 32)’s simple example.

Example. Consider the function

f (x,y) = y log(x) +
√

y log(x)

with the corresponding computational graph being displayed in Figure 3.

FIGURE 3 – EXAMPLE OF A SIMPLE COMPUTATIONAL GRAPH

SOURCE: Peyré (2020, p. 33).

31

The forward mode iterations to compute the derivative w.r.t. x following the
computational graph, are given by

∂x
∂x

= 1,
∂y
∂x

= 0

∂a
∂x

=
∂a
∂x

∂x
∂x

=
1
x

∂x
∂x

{x 7→ a = log(x)}
∂b
∂x

=
∂b
∂a

∂a
∂x

+
∂b
∂y

∂y
∂x

= y
∂a
∂x

+ 0 {(y, a) 7→ b = ya}

∂c
∂x

=
∂c
∂b

∂b
∂x

=
1

2
√

b
∂b
∂x

{b 7→ c =
√

b}

∂ f
∂x

=
∂ f
∂b

∂b
∂x

+
∂ f
∂c

∂c
∂x

= 1
∂b
∂x

+ 1
∂c
∂x

{(b, c) 7→ f = b + c}

To compute the derivative w.r.t. y we run another forward process

∂x
∂y

= 0,
∂y
∂y

= 1

∂a
∂y

=
∂a
∂x

∂x
∂y

= 0 {x 7→ a = log(x)}

∂b
∂y

=
∂b
∂a

∂a
∂y

+
∂b
∂y

∂y
∂y

= 0 + a
∂y
∂y

{(y, a) 7→ b = ya}

∂c
∂y

=
∂c
∂b

∂b
∂y

=
1

2
√

b
∂b
∂y

{b 7→ c =
√

b}

∂ f
∂y

=
∂ f
∂b

∂b
∂y

+
∂ f
∂c

∂c
∂y

= 1
∂b
∂y

+ 1
∂c
∂y

{(b, c) 7→ f = b + c}

2.4.2 Reverse Mode

Instead of evaluating the differentials for all the input nodes, which is prob-
lematic for a large number of nodes, the reverse mode evaluates the differentials of the
output node w.r.t. all the inner nodes.

The method is based on a backward adjoint chain rule and initialize with the
derivative of the final node

∂xt

∂xt
= Idnt×nt ,

and then from the last to the first node, iteratively make use of the following recursion
formula

∀ k = t− 1, t− 2, . . . , 1,
∂xt

∂xk
= ∑

m ∈ son(k)

∂xt

∂xm
× ∂xm

∂xk
= ∑

m ∈ son(k)

∂xt

∂xm
× ∂

∂xk
fm(x1, . . . , xm).

The notation “son(k)” denotes the nodes m < k of the graph that are connected to k. To
be clear, the same simple example.

32

Example. Consider again the function

f (x,y) = y log(x) +
√

y log(x).

The iterations of the reverse mode are given by

∂ f
∂ f

= 1

∂ f
∂c

=
∂ f
∂ f

∂ f
∂c

=
∂ f
∂ f

1 {c 7→ f = b + c}

∂ f
∂b

=
∂ f
∂c

∂c
∂b

+
∂ f
∂ f

∂ f
∂b

=
∂ f
∂c

1

2
√

b
+

∂ f
∂ f

1 {b 7→ c =
√

b, b 7→ f = b + c}

∂ f
∂a

=
∂ f
∂b

∂b
∂a

=
∂ f
∂b

y {a 7→ b = ya}
∂ f
∂y

=
∂ f
∂b

∂b
∂y

=
∂ f
∂b

a {y 7→ b = ya}

∂ f
∂x

=
∂ f
∂a

∂a
∂x

=
∂ f
∂a

1
x

{x 7→ a = log(x)}

This is the advantage of reverse mode over the forward mode. A single traversal over
the computational graph allows to compute both derivatives w.r.t. x and y, while the
forward mode necessities two processes.

An drawback of the reverse mode is the need to store the entire computational
graph, which is needed for the reverse sweep. In principle, storage of this graph is not
too difficult to implement. However, the main benefit of AD is higher accuracy, and in
many applications the cost is not critical.

2.5 TMB: TEMPLATE MODEL BUILDER

Note that the goal of AD is not to define an efficient computational graph, it
is up to the user to provide it. However, computing an efficient graph associated to a
mathematical formula is a complicated combinatorial problem. Thus, since our goal is
to be able to fit our desired statistical models, a computational tool able to efficiently
define and implement this computational graph is make necessary. To solve this and
many other tasks we have the Template Model Builder (TMB), developed by Kristensen
et al. (2016).

TMB 〈http://tmb-project.org〉 is an R (R Core Team, 2021) package for fit-
ting statistical latent variable models to data, inpired by AD Model Builder (ADMB)
(FOURNIER et al., 2012). ADMB is a statistical application for fitting nonlinear statistical
models and solve optimization problems, that implements AD using C++ classes and a
native template language. Unlike most R packages, in TMB the model is formulated in
C++. This characteristic provides great flexibility but requires some familiarity with the
C/C++ programming language.

 http://tmb-project.org

33

With TMB a user should be able to quickly implement complex latent effect
models through simple C++ templates. As an illustrative example let us consider an
simple mixed logistic regression i.e., a binomial GLMM with a logistic link function.
The latent structure is in the context of repeated measures, the same subject is observed
three times. Trying to keep it simple, no covariates. A hierarchical model’s description
is given by

yij | ui ∼ Binomial(n, pij)

ui ∼Normal(0,1)

g(pij) = logit(pij) = log
pij

1− pij
= β + ui

pij =
exp{β + ui}

1 + exp{β + ui}
, i the subject, j the subject observation (1,2,3).

The TMB implementation of this model is provided in Figure 4.

To keep the coherence would be more adequate to fit here a multinomial model.
However, I want to show you that in TMB we can also simulate data from the model
but not all r-distributions are implemented, as is the case of the multinomial. For this
reason, a binomial model was the choice. An even easier implementation of a logistic
model is available in TMB, called dbinom robust(), where we pass directly the logit(·)
but we do not have an rbinom robust() implementation available. Just for the sake of
completeness, in Figure 5 we have the R code showing how to manipulate the C++ model
template in terms of object definitions and parameters estimation and extraction for the
logistic mixed model.

In this chapter we describe step-by-step all the processes involved in the formu-
lation and parameter estimation of a GLMM. With TMB all this is put in practice in an
efficient and robust fashion. The user needs to provide the negative joint log-likelihood
function writing in a C++ template as exemplified in Figure 4, using specialized macros
that pass the parameters, latent effects and data from R, as exemplified in Figure 5.

When the model presents latent effects, during the model template compilation
the latent effects are integrated out via an efficient Laplace approximation routine
with the inner optimization made by a Newton algorithm, and the negative marginal
log-likelihood gradient is computed, via AD. The negative marginal log-likelihood is
returned into an R object that can then be optimized using the user’s favorite quasi-
Newton routine, available in R. All these procedures are briefly exemplified for a logistic
mixed model in Figure 4 and Figure 5.

To accomplish all that, TMB combines some state-of-art software

• CppAD, a C++ AD package 〈https://coin-or.github.io/CppAD/〉;

• Eigen (GUENNEBAUD; JACOB et al., 2010), a C++ templated matrix-vector library;

https://coin-or.github.io/CppAD/

34

• CHOLMOD, C sparse matrix routines available from R, used to obtain an efficient
implementation of the Laplace approximation with exact derivatives 〈https://
developer.nvidia.com/cholmod〉;

• Parallelism through BLAS 〈http://www.netlib.org/blas/〉, a Fortran tuned set of
Basic Linear Algebra Subprograms;

FIGURE 4 – R CODE FOR THE TMB IMPLEMENTATION OF A LOGISTIC MIXED MODEL

1 dll <- 'model '
2 filename <- paste0(dll , '.cpp')
3 writeLines ({'// A LOGISTIC MIXED MODEL (RANDOM INTERCEPT)
4 #include <TMB.hpp >
5 template <class Type >
6 Type objective_function <Type >:: operator () ()
7 {
8 // SPECIFY THE MODEL INPUTS AS DATA_
9 DATA_VECTOR(y);

10 DATA_SPARSE_MATRIX(Z);
11 DATA_SCALAR(n);
12
13 // SPECIFY THE MODEL PARAMETERS AND LATENT EFFECTS AS PARAMETER_
14 PARAMETER(beta);
15 PARAMETER(logsd); Type sd = exp(logsd);
16 PARAMETER_VECTOR(u); vector <Type > Zu = Z*u;
17
18 // IMPLEMENT THE MODEL
19 vector <Type > risk = exp(beta+Zu);
20 vector <Type > level = 1+risk;
21 vector <Type > prob = risk/level;
22
23 // nll: NEGATIVE LOG -LIKELIHOOD
24 parallel_accumulator <Type > nll(this); // DO THE MODEL IN PARALLEL
25 nll -= dnorm(u, Type (0), sd, true).sum();
26 nll -= dbinom(y, n, prob , true).sum();
27
28 // TMB ALLOWS THE USER TO WRITE THE SIMULATION CODE AS AN INTEGRATED
29 // PART OF THE C++ MODEL TEMPLATE
30 SIMULATE {
31 y = rbinom(Type (100), prob);
32 REPORT(y);
33 }
34 // WE MODEL THE LOG STANDARD DEVIATION (logsd) BUT TMB ALLOWS US TO
35 // MAKE DIRECT INFERENCE TO PARAMETER TRANSFORMATIONS , IN THIS CASE
36 // THE STANDARD DEVIATION (sd)
37 ADREPORT(sd);
38
39 return nll;
40 }'}, con=filename)
41
42 library(TMB) ## install.packages('TMB ')
43 TMB:: compile(filename)
44 dyn.load(TMB:: dynlib(dll)) ## loading the C++ model to R

SOURCE: The author (2021).

https://developer.nvidia.com/cholmod
https://developer.nvidia.com/cholmod
http://www.netlib.org/blas/

35

• Matrix (BATES; MAECHLER, 2019), a rich hierarchy sparse and dense ma-
trix classes and methods using LAPACK 〈http://www.netlib.org/lapack/〉 and
SuiteSparse 〈https://sparse.tamu.edu/〉 libraries.

FIGURE 5 – R CODE FOR THE MODEL FITTING OF A LOGISTIC MIXED MODEL WRITTEN
IN TMB

1 library(Matrix) ## install.packages('Matrix ')
2 beta <- 2
3 sd <- 1
4 cs <- 3 ## cluster size
5 nc <- 50 ## number of cluster
6 n <- nc * cs
7 Z <- Matrix ::bdiag(replicate(nc, rep(1, cs), simplify=FALSE))
8 u <- rnorm(nc, mean=0, sd=sd)
9 u0 <- numeric(nc) ## empty vector (initial guess)

10 risk <- exp(beta + Z %*% u)
11 prob <- risk/(1 + risk)
12 y <- numeric(n)
13 ## base:: rbinom () is not vectorized , do a raw loop is an option
14 for (i in seq(y)) y[i] <- rbinom(n=1, size=n, prob=prob[i])
15
16 ## building objective functions with derivatives based on the compiled
17 ## C++ template
18 obj <- TMB:: MakeADFun(data =list(y=y, Z=Z, n=n),
19 parameters=list(beta=beta , logsd=log(sd), u=u0),
20 DLL =dll ,
21 random ='u')
22 set.seed (1) ## optional
23 obj$simulate () ## generating a simulation
24 ## obj$simulate(complete=TRUE)
25 (opt <- nlminb(objpar , objfn, obj$gr)) ## parameters estimation
26 sdr <- TMB:: sdreport(obj) ## standard deviations
27 summary(sdr , select='fixed ') ## extracting model parameters
28 summary(sdr , select='report ') ## ... reported variables
29 cbind(u, summary(sdr , select='random ')) ## ... random effects

SOURCE: The author (2021).

An overview of the pachage design is shown in Figure 6.

FIGURE 6 – TMB PACKAGE DESIGN

SOURCE: Kristensen et al. (2016).

http://www.netlib.org/lapack/
https://sparse.tamu.edu/

36

Reinforcing, some key characteristics are

• TMB employs AD to calculate first and second order derivatives of the log-
likelihood function or of any objective function written in C++;

• The objective function, and its derivatives, can be called from R. Hence, parameter
estimation via base::optim() or base::nlminb() is easy to be performed;

• Standard deviations of any parameter, or derived parameter, can be obtained via
the delta method (Ver HOEF, 2012) implemented in TMB::sdreport().

Here we focus on GLMMs, but basically any statistical model with a latent
structure (or not), linear (or not), can be fitted with TMB. In times of big data and with
the TMB’s authors having a professional preference for state-space and spatial models,
TMB has also automatic sparseness detection and some other nice built tools. Pre and
post-processing of data should be done in R.

A TMB Users’ mailing list exists, and it is extremely helpful for taking doubts
and questions 〈https://groups.google.com/g/tmb-users〉. Also, a very didactic and
comprehensive documentation with several examples is available online 〈https://kaskr.
github.io/adcomp/ book/Tutorial.html〉.

https://groups.google.com/g/tmb-users
https://kaskr.github.io/adcomp/_book/Tutorial.html
https://kaskr.github.io/adcomp/_book/Tutorial.html

37

3 multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING

RISKS DATA

The clustered competing risks setting is a specific survival data structure. Al-
though, we are using a general statistical modeling framework, a generalized linear
mixed model (GLMM). Consequently, the data structure characteristics have to be
properly accommodated into the modeling construction.

To model competing risks data we need a multivariate model and we have to
choose in which scale to work on. We may work on the hazard scale and deal with
the cause-specific hazard function or on the probability scale and deal with the cause-
specific cumulative incidence function (CIF). By choosing the correct link function, we
are able to construct an appropriate multivariate GLMM to work on the probability
scale.

Our goal is to be able to deal with complex family studies, where there is
generally a strong interest in describing age at disease onset in the scenarios of within-
cluster dependence. The distribution of age at disease onset is directly described by
the cause-specific CIF. To build a multivariate GLMM for this type of data we need to
accommodate the cause-specific CIFs and the censorings. Assuming the conditional
distribution for our model response as multinomial we already deal with both left-
truncation and right-censoring, avoiding the specification of a censoring distribution.
The cause-specific CIFs can be modeled via the link function of our, then, multinomial
GLMM (multiGLMM). The multinomial distribution also guarantees that the CIFs of all
causes are modeled.

Our choice for a general framework tries to make the inference of this complex
model, easier. Besides, taking advantage of all the computational procedures mentioned
in the previous chapter. This chapter presents our multiGLMM for clustered competing
risks data and is divided into two sections. In Section 3.1 we discuss in detail the cluster-
specific cumulative incidence function (CIF) and in Section 3.2 we present the complete
modeling framework.

3.1 CLUSTER-SPECIFIC CUMULATIVE INCIDENCE FUNCTION (CIF)

Consider that the observed follow-up time of an individual is given by T =

min(T∗,C), where T∗ denote the failure time and C denote the censoring time. Given
the possible covariates x, for a cause-specific of failure k, the cumulative incidence

38

function (CIF) is defined as

Fk(t | x) = P[T ≤ t, K = k | x] =
∫ t

0
fk(z | x) dz

=
∫ t

0
λk(z | x) S(z | x) dz, t > 0, k = 1, . . . , K,

where fk(t | x) is the (sub)density for the time to a type k failure. This is the general
definition of a CIF, and to define it we need to define the functions that compose the
subdensity. The first is the cause-specific hazard function or process

λk(t | x) = lim
h→0

1
h

P[t ≤ T < t + h, K = k | T ≥ t, x], t > 0, k = 1, . . . , K.

In words, the cause-specific hazard function λk(t | x), represents the instantaneous rate
for failures of type k at time t given x and all other failure types (competing causes). If
we sum up all cause-specific hazard functions we get the overall hazard function,

λ(t | x) =
K

∑
k=1

λk(t | x).

From the overall hazard function we arrive in the overall survival function,

S(t | x) = P[T > t | x] = exp
{
−
∫ t

0
λ(z | x) dz

}
,

the second function that compose the subdensity fk(t | x). A comprehensive reference
for all these definitions is the book of Kalbfleisch & Prentice (2002).

Until this point, we were talking about a general CIF’s definition. We need now
a precise framework telling us how to take into consideration our clustered/family
structure. We use the same CIF specification of Cederkvist et al. (2019) i.e., the approach
that motivated this thesis.

For two competing causes of failure, the cause-specific CIFs are specified in the
following manner

Fk(t | x, u1, u2, ηk) = πk(x, u1, u2)︸ ︷︷ ︸
cluster-specific

risk level

×Φ[wkg(t)− xγk − ηk]︸ ︷︷ ︸
cluster-specific

failure time trajectory

, t > 0, k = 1, 2, (3.1)

i.e., as the product of a cluster-specific risk level with a cluster-specific failure time
trajectory, resulting in a cluster-specific CIF. What makes these components cluster-
specific are u = {u1, u2} and η = {η1, η2}, Gaussian distributed latent effects with zero
mean and potentially correlated i.e.,

u1

u2

η1

η2

 ∼ Multivariate
Normal

0
0
0
0

 ,

σ2

u1
cov(u1, u2) cov(u1, η1) cov(u1, η2)

σ2
u2

cov(u2, η1) cov(u2, η2)

σ2
η1

cov(η1, η2)

σ2
η2

 .

39

The cluster-specific survival function is given by S(t | x, u, η) = 1− F1(t | x, u, η1)−
F2(t | x, u, η2). Since we use the same CIF specification of Cederkvist et al. (2019), the
following details are essentially the same encountered in the paper.

Focusing first on the second component of Equation 3.1, the cluster-specific
failure time trajectory

Φ[wkg(t)− xγk − ηk], t > 0, k = 1, 2,

where Φ(·) is the cumulative distribution function of a standard Gaussian distribution.
Instead of wkg(t), in Cederkvist et al. (2019) is specified αk(g(t)) with αk(·) being a
monotonically increasing function known up to a finite-dimensional parameter vector,
wk. Examples are monotonically increasing B-splines or piecewise linear functions. How-
ever, to simplify the model structure we consider just the finite-dimensional parameter
vector. The bottom line is that the authors do the same approach in their applications.
With regard to the function g(t), it plays a crucial role since the CIF separation in
Equation 3.1 is only possible with it. It is used a time t transformation given by

g(t) = arctanh
(

t− δ/2
δ/2

)
, t ∈ (0, δ), g(t) ∈ (−∞, ∞),

where δ depends on the data and cannot exceed the maximum observed follow-up
time τ i.e., δ ≤ τ. With this Fisher-based transformation the value of the cluster-specific
failure time trajectory is equal 1, at time δ. Consequently, Fk(δ | x, u, ηk) = πk(x | u) and
we can interpret π1(x | u) and π2(x | u) as the cause-specific cluster-specific risk levels,
at time δ.

The cluster-specific risk levels are modeled by a multinomial logistic regression
model with latent effects i.e.,

πk(x,u) =
exp{xβk + uk}

1 + exp{xβ1 + u1}+ exp{xβ2 + u2}
, k = 1, 2, (3.2)

where the βk’s are the coefficients responsible for quantifying the impact of the covari-
ates in the cause-specific risk levels. For individuals from the same cluster/family, at
the same time point, the βks have the well-known odds ratio interpretation.

A direct understanding of all coefficients/parameters of Equation 3.1 can be
reached via the illustrations in Figure 7. To really understand what is going on, we
simplify the model. We still consider just two competing causes but without covariates
and we plot just the cluster-specific CIF of one failure cause. In Figure 7 A) we see that
the β’s are also related with the curve’s maximum value i.e., bigger the β, highest the
CIF will be.

The γk’s are the coefficients responsible for quantifying the impact of the co-
variates in the cause-specific failure time trajectories i.e., the shape of the cumulative

40

incidence. In Figure 7 B) we see that the γ’s are also related with an idea of midpoint
and consequently, growth speed. The fact that γk enters negatively in the cluster-specific
failure time trajectory makes that a negative value causes an advance towards the curve,
whereas a positive value causes a delay. Last but not least, the w’s in Figure 7 C). With
negative values, we have a decreasing curve and with positive values an increasing
curve i.e., we are interested only on the positive side.

FIGURE 7 – ILLUSTRATION OF COEFFICIENT BEHAVIORS FOR A GIVEN CUMULATIVE
INCIDENCE FUNCTION (CIF) (PROPOSED BY Cederkvist et al. (2019)), IN A
MODEL WITH TWO COMPETING CAUSES OF FAILURE, WITHOUT COVARI-
ATES, AND WITH THE FOLLOWING CONFIGURATION: β2 = 0, u = 0 AND
η = 0; IN EACH SCENARIO ALL OTHER COEFFICIENTS ARE SET TO ZERO,
WITH THE EXCEPTION OF w1 = 1

SOURCE: The author (2021).

Remains to talk about the within-cluster dependence induced by the latent
effects in u and η. Unfortunately, they do not have an easy interpretation. To help in
the discussion, Figure 8 illustrates the cluster-specific CIF for a given failure cause in a
model without covariates, let us call it failure cause 1 (in total we have two).

The latent effects u1 and u2 always appear together in the cluster-specific risk
level, as consequency they have a joint effect on the cumulative incidence of both causes.
As we can see in Figure 8, an increase in uk will increase the risk of failure from cause k.
The interpretation of cov(η1, η2) and cov(u1, u2) is straightforward, and those values
are in most of the cases positive, as said in Cederkvist et al. (2019). With regard to
cov(uk, ηk), negative values are the common situation. A negative correlation between
ηk and uk imply that when ηk decreases, uk increases and conversely when ηK increases,
uk decreases. In other words, an increased risk level is reached quickly and a decreased
risk level is reached later, respectively.

Practical situations with a positive within-cause correlation are hard to find i.e.,
where an increased risk level is associated with a late onset and vice versa. However, a
positive cross-cause correlation between η and u sounds much more realistic i.e., where

41

late onset of one failure cause is associated with a high absolute risk of another failure
cause.

FIGURE 8 – ILLUSTRATION OF A GIVEN CLUSTER-SPECIFIC CUMULATIVE INCIDENCE
FUNCTION (CIF), PROPOSED BY Cederkvist et al. (2019), IN A MODEL WITH
TWO COMPETING CAUSES OF FAILURE, WITHOUT COVARIATES AND THE
FOLLOWING CONFIGURATION: β1 = −2, β2 = −1, γ1 = 1, w1 = 3 AND u2 = 0.
THE VARIATION BETWEEN FRAMES IS GIVEN BY THE LATENT EFFECTS u1
AND η1

SOURCE: The author (2021).

The latent effects {uk, ηk} are assumed independent across clusters and shared
by individuals within the same cluster/family.

3.2 MODEL SPECIFICATION

The multiGLMM for clustered competing risks data is specified in the following
hierarchical fashion. By simplicity, we focus on two competing causes of failure but an
extension is straightforward.

For two competing causes of failure, a subject i, in the cluster/family j, in time

42

t, we have

yijt | {u1j, u2j, η1j, η2j} ∼Multinomial(p1ijt, p2ijt, p3ijt)

u1

u2

η1

η2

 ∼MN

0
0
0
0

 ,

σ2

u1
cov(u1, u2) cov(u1, η1) cov(u1, η2)

σ2
u2

cov(u2, η1) cov(u2, η2)

σ2
η1

cov(η1, η2)

σ2
η2

pkijt =
∂

∂t
Fk(t | x, u1, u2, ηk) (3.3)

=
exp{xkijβk + ukj}

1 + ∑K−1
m=1 exp{xmijβm + umj}

× wk
δ

2δt− 2t2 φ

(
wkarctanh

(
t− δ/2

δ/2

)
− xkijγk − ηkj

)
,

k = 1, 2.

The probabilities are given by the derivative w.r.t. time t of the cluster-specific CIF. The
choice of a multinomial logistic regression model ensures that the sum of the predicted
cause-specific CIFs does not exceed 1.

Considering two competing causes of failure, we have a multinomial with three
classes. The third class exists to handle the censorship and its probability is given by
the complementary to reach 1. This framework in Equation 3.3 results in what we call
multiGLMM, a multinomial GLMM to handle the CIF of clustered competing risks data.
For a random sample, the corresponding marginal likelihood function in given by

L(θ ; y) =
J

∏
j=1

∫
<4

π(yj | rj)× π(rj) drj

=
J

∏
j=1

∫
<4

{ nj

∏
i=1

nij

∏
t=1

(
(∑K

k=1 ykijt)!
y1ijt! y2ijt! y3ijt!

K

∏
k=1

p
ykijt
kijt

)
︸ ︷︷ ︸

fixed effect component

}
×

(2π)−2|Σ|−1/2 exp
{
−1

2
r>j Σ−1rj

}
︸ ︷︷ ︸

latent effect component

drj

=
J

∏
j=1

∫
<4

{ nj

∏
i=1

nij

∏
t=1

K

∏
k=1

p
ykijt
kijt︸ ︷︷ ︸

fixed effect

}
(2π)−2|Σ|−1/2 exp

{
−1

2
r>j Σ−1rj

}
︸ ︷︷ ︸

latent effect component

drj, (3.4)

where θ = [β γ w σ2 ρ]> is the parameters vector to be maximized. In our framework,
a subject can fail from just one competing cause or get censor, at a given time. Thus, the

43

fraction of factorials in the fixed effect component is made only by 0’s and 1’s. Finally,
returning the value 1. The matrix Σ is the variance-covariance matrix, which parameters
are given by σ2 and ρ.

Now, Equation 3.4 in words. To each cluster/family j we have a product of two
components. The fixed effect component, given by a multinomial distribution with its
probabilities specified through the cluster-specific CIF (Equation 3.1) and, the latent
effect component, given by a multivariate Gaussian distribution.

To each subject i that composes a cluster j we have its specific fixed effects
contribution. The likelihood in Equation 3.4 is the most general as possible, allowing
for repeated measures to each subject. Since all subjects of a given cluster shares the
same latent effect, we have just one latent effect contribution multiplying the product
of fixed effect contributions. As we do not observe the latent effect variables, rj, we
integrate out in it. With two competing causes of failure, we have four latent effects (a
multivariate Gaussian distribution in four dimensions). Consequently, for each cluster,
we approximate an integral in four dimensions. The product of these approximated
integrals results in the called marginal likelihood, to be maximized in θ.

3.2.1 Parametrization

We have to choose in which terms we parameterize the variance-covariance
matrix Σ. Besides the latent effects variances {σ2}, we have to choose if we will estimate
its covariances or correlations. By the name variance-covariance matrix, it is natural
to think on covariance terms. However, this option is not very attractive since its
interpretation is not clear. A more attractive choice is in terms of correlation.

The covariance between two terms is defined as a triple product: the two terms
standard deviations times the correlation ρ. Still thinking in two competing causes of
failure, we have then an Σ matrix with six correlations

Σ =

σ2

u1
ρu1,u2 σu1σu2 ρu1,η1 σu1ση1 ρu1,η2 σu1ση2

σ2
u2

ρu2,η1 σu2ση1 ρu2,η2 σu2ση2

σ2
η1

ρη1,η2 ση1ση2

σ2
η2

 .

With the matrix parametrization being chosen, we have that the parameters to be es-
timated are the components of the vector θ = [β γ w σ2 ρ]>. There we have the fixed
effects or mean components {β γ w}, the easiest to estimate in a statistical modeling
framework; we have variance components {σ2}, the intermediate ones; and the correla-
tion components {ρ}, the hardest ones. This idea of easy or hard to estimate may be
justified by three, connected, arguments.

44

The first comes from the fact that we are modeling the mean of a probability dis-
tribution in a hierarchical and structured fashion, consequently, the easiest parameters
to estimate will be the mean components. We may make the analogy that to estimate
the mean parameters we need data (resources); to estimate the variance parameters we
need more data (more resources), and to estimate the correlation parameters we need
much more data (even more resources). The second argument comes also to explain the
first one via the parametric space constraints.

Generally, the fixed effect components do not present constraints i.e., they can
vary in all R. The same can not be said from the variance components, constrained by
definition into the R+

∗ . Finally, we have the correlation components, constrained to the
interval [−1, 1]. These parametric space constraints drive us again to the first argument
since we need more data/resources/information to be able to estimate coefficients
constrained to some interval. Nevertheless, this may not be enough. Without providing
some extra information in terms of an e.g., constrained algorithm, it is very reasonable to
expect that during the optimization procedure some unrealistic areas of the parametric
space could be visited and jeopardize the stability or even the whole optimization
procedure. To overcome these possible difficulties, parameter reparametrizations are
more than welcome.

The variance and correlation parameters are modeled in terms of the matrix Σ.
This matrix is symmetric and more important, positive semi-definite. This last character-
istic is also the third argument to justify why is so difficult to estimate these parameters.
Since the estimates should lead to a positive semi-definite matrix, the employment of a
parametrization is welcome to enforces this condition.

In the subject of choosing the components parametrization for a positive-
definite matrix Σ, we have basically two big options available in the statistical modeling
literature. One of them consists of just transform the scale. By practical reasons, let us
think in a 2× 2 matrix

Σ =

exp{logσ2
1} z−1(z(ρ1,2))

√
exp{logσ2

1}
√

exp{logσ2
1}

exp{logσ2
2}

i.e., in the main diagonal we may now estimate the log-variances and in the off-diagonal
we may estimate Fisher z-transformed correlations.

The estimation of the log-variances has two big advantages:

• Since the natural logarithm is a real-valued function, we overcome the parametric
space constraint problem;

• High variances are problematic for many reasons but in the context of seeing
them as the diagonal components of a restricted matrix, being able to control its

45

magnitudes is a crucial task to the stability of any optimization routine. With the
natural logarithm transformation we shrink the parametric space as illustrated in
Figure 9 A), avoiding some eventual numerical cumbersome.

With the correlation components we proceed with the estimation of its Fischer z-
transformation. This transformation, and its inverse, are defined as

z(ρ) =
1
2

log
(

1 + ρ

1− ρ

)
= arctanh(ρ), z−1(ρ) =

exp{2ρ} − 1
exp{2ρ}+ 1

= tanh(ρ).

The Fisher z-transformation plays the role of stretching the small correlation parametric
space but doing this in a smooth fashion, as illustrated in Figure 9 B).

FIGURE 9 – ILLUSTRATION OF THE PARAMETRIZATION BEHAVIOR FOR THE VARI-
ANCE COMPONENTS, IN A), AND CORRELATION COMPONENTS, IN B)

SOURCE: The author (2021).

The other parametrization option consist in estimate the elements of a factor-
ization or decomposition of the positive-definite matrix Σ. The most common is the
Cholesky factorization or decomposition (PINHEIRO; BATES, 1996). For two competing
causes of failure, a standard Cholesky decomposition of Σ may be expressed as

Σ =

c1 0 0 0
c2 c3 0 0
c4 c5 c6 0
c7 c8 c9 c10

c1 c2 c4 c7

0 c3 c5 c8

0 0 c6 c9

0 0 0 c10

 = LL>,

where {ci}10
i=1 are the unconstrained coefficients to be estimated.

A disadvantage in the use of a decomposition as the Cholesky is the lack of
a straightforward interpretation to the elements {ci}10

i=1. However, with the applica-
tion of the delta method, already implemented in TMB’s (KRISTENSEN et al., 2016)

46

TMB::sdreport(), it is straightforward to get back the Σ elements together with its
respective standard errors. The main advantage of this parametrization apart from the
fact that it ensures positive definiteness, is that it is computationally simple and stable.

Just to mention another viable possibilities, we could use a modified Cholesky
decomposition (POURAHMADI, 2007) providing a better statistical interpretation of
the decomposition elements or, we could parametrize the precision matrix, Q = Σ−1.
Since we use Σ−1 in the marginal likelihood of Equation 3.4, parametrizing directly its
inverse save us some computations.

Besides the popularity of the Cholesky method, there is another factorization
scheme available and efficiently implemented in TMB. It is a factorization based on a
vector scale transformation of an unstructured correlation matrix. For two competing
causes of failure the decomposition is specified in the following fashion

Σ = VD−1/2LL>D−1/2V>,

where

L =

1 0 0 0
c1 1 0 0
c2 c3 1 0
c4 c5 c6 1

 , D = diag(LL>) and W = diag
(
{σi}4

i=1

)
.

This scheme is based initially on the factorization of a correlation matrix defined as
D−1/2LL>D−1/2. The elements {ci}6

i=1 to be estimated have the advantage of being
unconstrained and guarantees the matrix symmetry and positive definiteness. The
variances are scaled via the diagonal matrix V, its elements {σi}4

i=1 are then the standard
deviations to be estimated.

47

4 SIMULATION STUDIES

This chapter describes how to simulate from our multiGLMM and describes
the performed simulation studies. The general simulation procedure is addressed in
Section 4.1. In Section 4.2 the performed simulation studies are presented in detail.

4.1 SIMULATING FROM THE MODEL

Being able to simulate data from a model is a key task, fundamental to assess
the finite-sample properties and the estimation procedure liability of a given statistical
model. The step-by-step describing the simulation procedure of our multiGLMM is
presented on Algorithm 1, following the model hierarchical structure stipulated in
Equation 3.3.

ALGORITHM 1 SIMULATING FROM A multiGLMM FOR CLUSTERED COMPET-
ING RISKS DATA

1: Set J, the number of clusters
2: Set nj, the number of cluster elements . can be of different sizes
3: Set K− 1, the number of competing causes of failure
4: Set the model parameter values θ = [β γ w σ2 $]>

5: Sample J latent effect vectors from a Multivariate Normal(K−1)×(K−1)(0, Σ(σ2,$))
6: Set δ . maximum follow-up time
7: Set the failure times tij

8: Compute the competing risks probabilities

pkij =
exp{xkijβkj + ukj}

1 + ∑K−1
m=1 exp{xmijβmj + umj}

× wk
δ

2δtij − 2t2
ij

φ

(
wkarctanh

(
tij − δ/2

δ/2

)
− xkijγkj − ηkj

)
,

Censorship : pKij = 1−
K−1

∑
k=1

pkij, k = 1, 2, . . . , K− 1

9: Sample J × nj vectors from a Multinomial(p1ij, p2ij, . . . , pKij)

10: If tij = δ, moves to class K . any failure at time δ is a censorship
11: return multinomial vectors and their respective failure/censoring times

SOURCE: The author (2021).

The model described in Equation 3.3 is in a general form, allowing for varying
coefficients between clusters. However, we focus on a simpler structure with just fixed

48

intercepts. Fixing the latent effects in its distribution mean, zero, and using the following
fixed effects configuration for two competing causes of failure

β = [−2 1.5]>

γ = [1.2 1]> (4.1)

w = [3 5]>,

we get the CIF’s and failure probabilities (CIF derivatives w.r.t. time t, dCIF) presented
respectively in Figure 10.

FIGURE 10 – CUMULATIVE INCIDENCE FUNCTIONS (CIF) AND RESPECTIVE DERIVA-
TIVES (dCIF) W.R.T. TIME FOR A MODEL WITH TWO COMPETING CAUSES
OF FAILURE, WITHOUT COVARIATES, LATENT EFFECTS IN ZERO, AND
FIXED EFFECTS IN Equation 4.1

SOURCE: The author (2021).

By adding a complete latent structure,
u1

u2

η1

η2

 ∼Multivariate Normal

0
0
0
0

 ,

1 0.4 −0.5 0.4

1 0.4 −0.3
1 0.4

1

 , (4.2)

we are able to apply Algorithm 1 and generate a complete model sample with 50000
clusters of size two (pairs), summarized in Figure 11. The R function written to simulate
the data is available in Appendix C.

Varying the parameters configuration we are able to build basically any CIF’s
format. However, its dCIF will be always small i.e., the generated probabilities for
the failure causes will always be (really) small, passing all the probability mass to the
censorship class. Low probabilities imply few failures, making the multiGLMM even
harder to fit. All these behaviors are seen in Figure 11.

49

FIGURE 11 – HISTOGRAMS FOR SIMULATED PROBABILITIES WITH RESPECTIVE OUT-
PUT PCERCENTAGES AND FAILURE TIMES FOR A MODEL WITH TWO COM-
PETING CAUSES AND 50000 CLUSTERS OF SIZE TWO. THE SIMULATION
FOLLOWED ALGORITHM 1 GUIDELINES WITH PARAMETER CONFIGURA-
TIONS SPECIFIED IN Equation 4.1 AND Equation 4.2

SOURCE: The author (2021).

Thinking of epidemiological or public health problems, the reasonable CIF
behaviors are the ones presented in Figure 10. In the simulation routine, the failure/-
censorship times are based on the random sampling of values between 30 and 80-time
units. Another approach could be performing this random sampling by age group, to
have something similar to a realistic population pyramid. However, by performing
some tests we saw that having a realistic CIF is enough. Even with a uniform time
distribution, the failure times will not be uniform, as the CIF curves impose their form.
We can see this happening in the bottom graphs of Figure 11.

Cederkvist et al. (2019) does something different through the sampling of the
censorship times from a U(0, δ), the sampling of ς ∼ U(0, 1), and the computation of
the cause-specific failure times by solving

ς = Φ
(

wkarctanh
(

tij − δ/2
δ/2

)
− xkijγk − ηkj

)
for tij,

50

with i being the subject, j the cluster, and k the failure cause. This approach implies a
parametric form for the failure times, which we do not know if holds in the real world.

4.2 SIMULATION STUDIES DESIGN

To stress the model and check the properties of the maximum likelihood esti-
mates, we propose seventy-two scenarios. All scenarios with two competing causes.
Thus, a three classes multinomial distribution.

We consider two CIF scenarios, in summary, a low and a high CIF scenario.
The parameter configurations are presented together with their curves in Figure 12. As
mentioned before, independent of the configuration the censorship level is basically the
same.

FIGURE 12 – CUMULATIVE INCIDENCE FUNCTIONS (CIF) FOR A MODEL WITH TWO
COMPETING CAUSES OF FAILURE, WITHOUT COVARIATES, AND LATENT
EFFECTS IN ZERO

SOURCE: The author (2021).

We use four multiGLMMs, that can be discriminated by their latent effect
structures

σ2 = [σ2
u1
= 1 σ2

u2
= 0.6 σ2

η1
= 0.7 σ2

η2
= 0.9];

ρ = [ρu1,u2 = 0.1 ρu1,η1 = −0.5 ρu1,η2 = 0.3 ρu2,η1 = 0.3 ρu2,η2 = −0.4 ρη1,η2 = 0.2].

In

Σ =

[
R C

C> T

]
with

R =

[
σ2

u1
cov(ρu1,u2)

σ2
u2

]
, T =

[
σ2

η1
cov(ρη1,η2)

σ2
η2

]
, C =

[
cov(ρu1,η1) cov(ρu1,η2)

cov(ρu2,η1) cov(ρu2,η2)

]
.

51

They are:

risk model A model with latent effects only on the risk level i.e., Σ 2×2 = R;

time model A model with latent effects only on the trajectory time level i.e., Σ 2×2 = T;

block-diag model A model with latent effects on the risk and trajectory time level only
i.e., Σ 4×4 = diag(R, T);

complete model A model with a complete latent effects structure i.e, Σ 4×4 = Σ.

All models are based on some decomposition of the symmetric matrix

Σ =

[
R C

C> T

]
=

1.0 0.0775 −0.4183 0.2846

0.6 0.1944 −0.2939
0.7 0.1587

0.9

 .

Propose a 4× 4 matrix like this is not so simple since we should not only look at the
values coherence. The matrix should also be positive-definite, and more than that, the
submatrices R, T, and diag(R, T), should also be positive-definite since they are also
used as variance-covariance matrices.

The inherent idea of these four models is to be able to check if a latent structure
on both CIF levels is really necessary. To accomplish this goal we propose the simpler
versions i.e., a latent structure only on the risk and only on the trajectory time. More
than just check the necessity of a complete latent specification, we have to check if we
are able to properly estimate all the covariance parameters. Thinking in these tasks,
we have the block-diag and the complete model specifications, and also the CIF level
configurations. Are we able to properly estimate the covariance parameters independent
of the CIF level? Do we really need or can we estimate the cross-correlations? Those are
the kind of questions that motivate the simulation study and consequently, the scenario
specifications.

Together with the model specifications and CIF configurations, we
have three sample sizes, 5000; 30000; and 60000 data points. They are com-
bined with three cluster sizes, size 2; size 5; and size 10 clusters. Thus,

5000 data points,

• 2500 clusters of size 2

• 1000 clusters of size 5

• 500 clusters of size 10

30000 data points,

• 15000 clusters of size 2

• 6000 clusters of size 5

• 3000 clusters of size 10

60000 data points,

• 30000 clusters of size 2

• 12000 clusters of size 5

• 6000 clusters of size 10

52

The sample and cluster size specifications were thought to agree with family
studies, generally having big samples or even treating with populations i.e, a lot of
families/clusters of small sizes. In Cederkvist et al. (2019), the simulation studies were
performed with samples/populations of 50000 clusters of size 3. The real data example
consisted of a study with more than 1200000 families with no more than 4 members.
For computational reasons, they worked with a sample of fewer than 15000 clusters.

Besides the sample size per se, by increasing it we also increase the number of
Laplace approximations to be performed since each cluster implies a Laplace approxi-
mation. This affects hugely the computational time. About the failure/censorship times,
we work on a grid between 30 and 80 years. The times are sampled from a Uniform
distribution on that grid, as explained in Section 4.1.

In summary, we have: two CIF configurations, four latent effect structures, three
sample sizes, and three cluster sizes; 2× 4× 3× 3 = 72 scenarios. For each scenario,
we simulate 500 samples and fitted the corresponding model. Thus, 72× 500 = 36000
models/fits.

In Figure 13 we have the C++ code for the TMB implementation of the complete
model.

FIGURE 13 – C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A
COMPLETE 4x4 LATENT STRUCTURE

1 // multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA

2 // COMPLETE 4x4 LATENT STRUCTURE (COMPLETE MODEL)

3 #include <TMB.hpp >

4 template <class Type >

5 Type objective_function <Type >:: operator () ()

6 {

7 using namespace density;

8 DATA_MATRIX(Y);

9 DATA_SPARSE_MATRIX(Z);

10 DATA_VECTOR(time);

11 DATA_SCALAR(delta);

12 PARAMETER(beta1);

13 PARAMETER(beta2);

14 PARAMETER(gama1);

15 PARAMETER(gama2);

16 PARAMETER(w1);

17 PARAMETER(w2);

18
19 PARAMETER(logs2_1); Type s2_1=exp(logs2_1);

20 PARAMETER(logs2_2); Type s2_2=exp(logs2_2);

21 PARAMETER(logs2_3); Type s2_3=exp(logs2_3);

22 PARAMETER(logs2_4); Type s2_4=exp(logs2_4);

23

53

24 PARAMETER(rhoZ12); Type rho12=(exp(2*rhoZ12) -1)/(exp(2*rhoZ12)+1);

25 PARAMETER(rhoZ13); Type rho13=(exp(2*rhoZ13) -1)/(exp(2*rhoZ13)+1);

26 PARAMETER(rhoZ14); Type rho14=(exp(2*rhoZ14) -1)/(exp(2*rhoZ14)+1);

27 PARAMETER(rhoZ23); Type rho23=(exp(2*rhoZ23) -1)/(exp(2*rhoZ23)+1);

28 PARAMETER(rhoZ24); Type rho24=(exp(2*rhoZ24) -1)/(exp(2*rhoZ24)+1);

29 PARAMETER(rhoZ34); Type rho34=(exp(2*rhoZ34) -1)/(exp(2*rhoZ34)+1);

30
31 PARAMETER_MATRIX(U); matrix <Type > ZU=Z*U;

32 Type risk1 =0;

33 Type risk2 =0;

34 Type level =0;

35 // gt=atanh(2*time/delta -1); atanh(x)=0.5*log ((1+x)/(1-x))

36 vector <Type > gt=0.5*log(time/(delta -time));

37 vector <Type > dgt=delta/(2*time*(delta -time));

38 Type x1=0;

39 Type x2=0;

40 vector <Type > y(Y.cols());

41 vector <Type > prob(Y.cols());

42 parallel_accumulator <Type > nll(this);

43 // Type nll=0;

44 vector <Type > u(U.cols());

45
46 Type cov12=rho12*sqrt(s2_1)*sqrt(s2_2);

47 Type cov13=rho13*sqrt(s2_1)*sqrt(s2_3);

48 Type cov14=rho14*sqrt(s2_1)*sqrt(s2_4);

49 Type cov23=rho23*sqrt(s2_2)*sqrt(s2_3);

50 Type cov24=rho24*sqrt(s2_2)*sqrt(s2_4);

51 Type cov34=rho34*sqrt(s2_3)*sqrt(s2_4);

52 matrix <Type > Sigma(4, 4);

53 Sigma.row(0) << s2_1, cov12 , cov13 , cov14;

54 Sigma.row(1) << cov12 , s2_2, cov23 , cov24;

55 Sigma.row(2) << cov13 , cov23 , s2_3, cov34;

56 Sigma.row(3) << cov14 , cov24 , cov34 , s2_4;

57
58 MVNORM_t<Type > dmvnorm(Sigma);

59 for (int i=0; i<U.rows(); i++) {

60 u=U.row(i);

61 nll += dmvnorm(u);

62 }

63 for (int i=0; i<Y.rows(); i++) {

64 risk1=exp(beta1 + ZU(i, 0));

65 risk2=exp(beta2 + ZU(i, 1));

66 level=1 + risk1 + risk2;

67 x1=w1*gt(i) - gama1 - ZU(i, 2);

68 x2=w2*gt(i) - gama2 - ZU(i, 3);

69 prob (0)=risk1/level * w1*dgt(i) * dnorm(x1, Type (0), Type (1), false);

70 prob (1)=risk2/level * w2*dgt(i) * dnorm(x2, Type (0), Type (1), false);

54

71 prob (2)=1 - prob (0) - prob (1);

72 y=Y.row(i);

73 nll -= dmultinom(y, prob , true);

74 }

75 ADREPORT(s2_1);

76 ADREPORT(s2_2);

77 ADREPORT(s2_3);

78 ADREPORT(s2_4);

79 ADREPORT(rho12);

80 ADREPORT(rho13);

81 ADREPORT(rho14);

82 ADREPORT(rho23);

83 ADREPORT(rho24);

84 ADREPORT(rho34);

85 REPORT(Sigma);

86 return nll;

87 }

SOURCE: The author (2021).

Since the other three models can be seen as special cases of the complete model,
we show their TMB’s implementation in the Appendix D (Section D.1, Section D.2,
Section D.3). In the Appendix D (Section D.4), we also have the R code showing how to
load and fit the models.

55

5 RESULTS

This chapter presents the simulation study results. We have seventy-two simu-
lation scenarios, as detailed in Chapter 4. For each scenario we simulate 500 samples. In
total, we fit 36000 models.

5.1 SIMULATION STUDY

Let us just recap the parameter values used

High CIF configuration : {β1 = −2, β2 = −1.5, γ1 = 1, γ2 = 1.5, w1 = 3, w2 = 4};
Low CIF configuration : {β1 = 3, β2 = 2.5, γ1 = 2.6, γ2 = 4, w1 = 5, w2 = 10}.

σ2
u1
= 1

σ2
u2
= 0.7,

σ2
η1
= 0.6

σ2
η2
= 0.9

Correlation structure =

u1 u2 η1 η2

1 0.1 −0.5 0.3 u1

1 0.3 −0.4 u2

1 0.2 η1

1 η2

.

The parameter values per se are not important. What is important is to keep in mind
the behaviors implied by them, and see if the proposed model is able to estimate the
true values in several different scenarios and measure the quality of the estimates.

The take-home message for the fixed-effect parameters, is to show that we can
construct different level CIF scenarios. The βs are responsible for the curve maximum
point or plateau, being in the risk level CIF component, the γs and ws are responsible
for basically the curve shape, being in the failure time trajectory level CIF component.
Its interpretation is presented in detail in Chapter 3. About the latent-effects, the chosen
covariance structure is considerably high but still acceptable. The underlying idea was
to try to build a realistic covariance scenario and consequently be able to check how the
model performs in such conditions.

In the following pages we have several graphs summarizing the estimates bias.
In each figure, we have the estimate bias and its uncertainty described by a Wald-based
confidence interval i.e., ± 1.96 the bias standard deviation. This is a good uncertainty
representation choice since it is symmetric. In the Appendix D, we have the same
estimates bias but with its uncertainty measure being the corresponding 2.5 and 97.5%
bias quantiles. We chose to use these uncertainty representations uniquely based on the
point estimates instead of the standard error computations. In several scenarios, the
model fails to compute all the standard errors, caused by Hessian numerical instabilities.

56

In each of the following estimates bias graphs, the seventy-two scenarios are
accommodated. We have up to four blocks of bars, each block representing a model.
In each block we have eighteen bars, each bar representing the 500 fits in each of the
eighteen scenarios, 4× 18× 500 = 36000.

Each scenario name consists of a combination of three strings

• The cluster size (cs), 2, 5, and 10;

• The CIF configuration, high and low;

• The sample size, 5, 30, and 60 thousand.

We have tried to fit a total of 36000 models but not all converged. To show these
characteristic, we control the bar widths. Something specific can be said about each
parameter but let us keep the focus on the general remarks. Starting from the fixed-effect
parameters in Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19, we
have very nice results that already show a strong inclination towards the complete
model’s choice.

With a latent structure only in the risk level or in the failure time trajectory
level, the low CIF scenarios are the ones with a much smaller bias-variance. In general,
the mean-bias is small but the variances are high. When we have a latent structure on
both levels but we still assume the cross-correlations as zero (block-diag model), the
results get a little bit better. Nevertheless, when we assume a non-zero cross-correlation
structure (complete model), basically everything changes for the better. The mean biases
get even closer to zero, the standard deviations decrease 50% or more, and mainly,
now the high CIF scenarios are the ones with a much smaller bias-variance. All this is
accomplished through the consideration of the cross-correlations.

In the simpler models, with a latent structure just in one level, is hard to see
some significant difference between the clusters and sample sizes. With the complete
model, in the other hand, the difference is clear: as we increase the clusters and the
sample sizes, the bias-variance decreases. The mean-bias is basically always the same. In
the risk model is hard to point-out a scenario as the best or worst. For the time model,in
the scenario with clusters of size 2, high CIF, and 5 thousand data points, we get a much
bigger standard deviation in the βs parameter estimates. For the block-diag model, in
the scenario with clusters of size 2, low CIF, and 5 thousand data points, the standard
deviations are huge for the curve shape parameter estimates of the competing cause
1. In the Appendix D, with the 2.5 and 97.5% bias quantiles, the most extreme values
are removed from the uncertainty representation. There, the main characteristic is the
parameter estimates asymmetry.

57

FIGURE 14 – PARAMETER β1 BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

FIGURE 15 – PARAMETER β2 BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

58

FIGURE 16 – PARAMETER γ1 BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

FIGURE 17 – PARAMETER γ2 BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

59

FIGURE 18 – PARAMETER w1 BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

FIGURE 19 – PARAMETER w2 BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

60

FIGURE 20 – PARAMETER log(σ2
1) BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

FIGURE 21 – PARAMETER log(σ2
2) BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

61

FIGURE 22 – PARAMETER log(σ2
3) BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

FIGURE 23 – PARAMETER log(σ2
4) BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

62

FIGURE 24 – PARAMETER z(ρ12) BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

FIGURE 25 – PARAMETER z(ρ34) BIAS WITH ± 1.96 STANDARD DEVIATIONS

SOURCE: The author (2021).

63

FIGURE 26 – PARAMETERS {z(ρ13), z(ρ24), z(ρ14), z(ρ23)} BIAS WITH ± 1.96 STANDARD
DEVIATIONS

SOURCE: The author (2021).

With the log-variances presented in Figure 20, Figure 21, Figure 22, and Fig-
ure 23, we have instead a similar behavior through the models. For all the models,
the high CIF scenarios are the ones with a smaller mean and bias-variances. From the
risk/time model to the block-diag model, we do not see a significant improvement
in terms of bias reduction. Such improvement, however, is clear when we look at the
complete model. Again, the magick of considering the cross-correlations.

The same said about the log-variances, can be applied to the risk correlations
in Figure 24, with one addendum: the bias reduction is even bigger. With the time
correlation in Figure 25, at least with clusters of size 2 and 5, we get the same behavior
observed with the fixed-effect parameters i.e., with the simpler models, the smaller
biases are observed in the low CIF scenarios. However, with the complete model, we
get the opposite. With the cross-correlations in Figure 26, the mean and bias-variances
are much smaller in the high CIF scenarios.

The biggest bias-variances are obtained in the log-variances. A final remark
to be made is about convergences. With the simpler models, not all of them work,
having in some scenarios (generally the ones with 60 thousand data points) a 50∼60%
convergence rate. With the complete model, basically, almost all fits reach convergence
(∼95% performance).

64

After looking at the parameter estimates biases, let us take a look at the implied
mean-CIF curves. To nicely accommodate all seventy-two scenarios we split the curves
by level-CIF. In Figure 27 we have the high CIF scenario curves and in Figure 28 the low
CIF scenario curves. Since for all the models we have a latent structure for the within-
cluster dependency, the inherent idea is that this also affect the fixed-effect parameter
estimates. By taking its average in each of the seventy-two scenarios, we are able to
construct the mean CIF curves.

In Figure 27 we have all the thirty-six curves obtained in the high CIF scenarios.
It is clear that with the complete model we get a perfect fit in all nine scenarios. The risk
and time models estimate well the curve shape parameters but they fail to learn the
max incidence. A compensation between curves is clear.

FIGURE 27 – HIGH CUMULATIVE INCIDENCE FUNCTION (CIF) SCENARIO CURVES

SOURCE: The author (2021).

65

FIGURE 28 – LOW CUMULATIVE INCIDENCE FUNCTION (CIF) SCENARIO CURVES

SOURCE: The author (2021).

Still in Figure 27, in the risk model, there is a super estimation of β1 in all
scenarios. For failure cause 2, there is a sub estimation. With the time model, we observe
the opposite compensation but on a smaller scale. With the time model, we get much
better curves than with the risk model. The block-diag model results are a middle term
between them. For the time model, the scenario with cluster size 10 and 60 thousand
data points is a highlight. For the block-diag model, the highlight is the scenario with
cluster size 5 and 30 thousand data points.

In the low CIF scenarios in Figure 28, the estimation is clearly more difficult.
The overall fits are bad, being impossible to select a scenario with overall good results.
For one of the failure causes, the estimation quality is not so bad. The problem is

66

when we look to the other. An interesting scenario is the one with cluster size 2 and
60 thousand data points. In this scenario we see the worst fits for failure cause 1, with
a negative highlight in the block-diag configuration. However, with this same model,
for failure cause 2, it is the scenario were we better learn the true curve. An interesting
compensation phenomena. The best joint fit is still with the complete model.

Now we look at how the latent-effect parameter estimates distribute themselves.
Given the huge number of scenarios and the fact that is harder to estimate covariance
parameters, we chose to plot the parameter estimates just in the scenarios with better
performances. By the metrics of small bias and CIF shape learning, the scenarios with
better results are the ones with high CIF and bigger sample sizes. We have the densities
for the variance parameter estimates, in each of these scenarios, presented in Figure 29.
In Figure 30 we have the same for the correlation parameter estimates.

An interesting result is the clear difference between risk and time models’ co-
variance parameter estimates. With the risk model, we have an evident super estimation
and bigger variances. With the time model we get much better results, but still with
high variances. The block-diag model generally performs better than the risk model and
worst than the time model, showing again to be a compromise between them. Besides
the bias itself, we should also pay attention to the values. We model the variances in the
log-scale, so a value 5, in reality, implies a variance of exp(5) = 148. Terrible. This kind
of problem do not sound to appear with the complete model.

All correlations are quite well estimated, in all three scenarios, with the complete
model. Not only the correlations but the variances also. The lack of any considerable
difference between the covariance densities, indicates no quality divergences in the
results for different cluster sizes. The densities in Figure 29 and Figure 30 are the final
corroboration indicating the good performance of the maximum likelihood method in
the complete model.

Between the four tested models, the complete model was the one with the
smallest biases, better CIF shape learning, and precisest covariance parameter estimates.
In Figure 31 we have a heat-map of the correlations between parameter estimates for
the complete model in the scenario with clusters of size 10, high CIF, and 60 thousand
data points.

We have a little bit of everything in the parameter estimates correlations’ heat-
map. Some correlations are very close to zero, but we also have strong positive and
negative correlations. We can mention some curiosities, but nothing pathological ap-
pears to happen, at least nothing clear.

67

FIGURE 29 – VARIANCE PARAMETERS DENSITIES IN THE SCENARIOS OF HIGH CIF
AND 60 THOUSAND DATA POINTS

SOURCE: The author (2021).

68

FIGURE 30 – CORRELATION PARAMETERS DENSITIES IN THE SCENARIOS OF HIGH CIF
AND 60 THOUSAND DATA POINTS

SOURCE: The author (2021).

In Figure 31, all fixed-effect parameters are positive correlated, with an emphasis
on the correlation between β1 and β2, and the one of the βs with the ws. Another
interesting observation is the strong negative correlation between the βs and the risk
level log-variances, and also the (less strong) positive correlation between the βs and
the failure time trajectory level log-variances. The risk level log-variances are (strongly)
positively correlated. So do the failure time trajectory level ones, but again, not so strong
as in the risk level. The correlations between the log-variances of different levels are
negative.

69

FIGURE 31 – COMPLETE MODEL’S PARAMETERS CORRELATION HEAT-MAP IN THE
SCENARIO OF CLUSTER SIZE 10, HIGH CIF, AND SIXTY-THOUSAND DATA
POINTS

SOURCE: The author (2021).

70

6 DISCUSSION

The general goal of this master thesis was the proposition and evaluation of
a maximum likelihood estimation approach for the analysis of clustered competing
risks data. Focused on the probability scale, by means of the cumulative incidence
function (CIF), instead of the hazard scale usual in the survival modeling literature
(KALBFLEISCH; PRENTICE, 2002). We model the clustered competing risks on a
latent-effects framework, a generalized linear mixed model (GLMM) (MCCULLOCH;
SEARLE, 2001), with a multinomial distribution for the competing risks and censorship,
conditioned on the latent-effects. The within-cluster latent dependency is accommo-
dated by a multivariate Gaussian distribution and is modeled via its covariance matrix
parameters.

The failures by the competing causes and their respective censorships are mod-
eled in the probability scale, by means of the CIF (KALBFLEISCH; PRENTICE, 2002;
ANDERSEN et al., 2012). The CIF is accommodated in our GLMM framework in terms
of the link function (MCCULLAGH; NELDER, 1989), as the product of two functions,
one responsible to model the instantaneous risk and the other the failure time trajectory,
both in a cluster-specific fashion. The shape of these functions is described in detail
in Chapter 3. This particular GLMM formulation is what makes our model, particu-
lar. Thus, we have what we call a multiGLMM: a multinomial GLMM for clustered
competing risks data.

The two-function product CIF formulation was taken from Cederkvist et al.
(2019) but there they use a different estimation framework, a composite likelihood
framework (LINDSAY, 1988; COX; REID, 2004; VARIN; REID; FIRTH, 2011). Here we
do a full likelihood analysis instead. A composite approach is generally used when a full
likelihood approach is impossible or computationally impracticable. Our goal here was
to assess a full likelihood framework taking advantage of state-of-the-art computational
libraries together with efficient algorithm implementations. We have all this with the R

(R Core Team, 2021) package TMB (KRISTENSEN et al., 2016).

The applications in focus here were family studies. Besides the within-
cluster/family dependence, this kind of study is characterized by involving big samples,
generally, populations. Also, generally having a high number of small clusters, families.
A maximum likelihood approach with the use of efficiently implemented Laplace ap-
proximations (TIERNEY; KADANE, 1986; BONAT; RIBEIRO-JR, 2016) together with an
automatic differentiation (AD) (WOOD, 2015; NOCEDAL; WRIGHT, 2006) routine, all
via TMB, is able to efficiently handle with a high number of clusters, independent of its
size. The multinomial distribution assumption, on its own, is an excellent probabilistic

71

choice since it can accommodate virtually any number of competing causes of failure
and its censorship. The presence of those two characteristics in our multiGLMM makes
it an efficient and scalable modeling framework for clustered competing risks data.

Even with our modeling framework being virtually able to handle any number
of competing causes of failure, we restrained ourselves to work here with only two
of them. With two competing causes, we have a 4× 4 covariance matrix for the latent
effects, which implies ten covariance parameters, which is already a lot of parameters
to be estimated in a latent structure. Since our goal was to assess the viability of the
maximum likelihood estimation method, we kept it with two causes.

All models from the simulation study were run, in a parallelized fashion, in
one of the two following Linux systems:

System 1 12 Intel (R) Core (TM) i7-8750H CPU @ 2.20GHz processors with 16GB RAM;

System 2 30 Intel (R) Xeon (R) CPU E5-2690 v2 @ 3.00GHz processors and 206GB RAM.

Each risk and time model run is not so time-consuming, generally never taking
more than 5 minutes. The inherent idea is that for each cluster we are always performing
two-dimension integral approximations and we have just three covariance parameters.
With the block-diag model, we are theoretically in four dimensions. However, since
the covariance matrix is, block-diagonal, we experienced several numerical instability
problems. The solution, as can be seen in the Section D.3 (Appendix D) code, was to split
it into two two-dimension matrices, since the 4× 4 covariance matrix is block-diagonal.
This simple solution solved all numerical instability problems. The computational time
was only a little bit bigger than with the risk and time models.

Finally, the complete model. In the biggest scenario, with 60 thousand data
points and clusters of size 2 i.e., with 30 thousand four-dimension integral approxi-
mations (ten parameters in the covariance matrix), the model fitting takes 30 minutes,
in parallel, with TMB. Before doing the TMB implementation, to really understand
what we were doing, we did a complete R implementation. We wrote the marginal
log-likelihood in R, based on our own Laplace approximation (BONAT; RIBEIRO-JR,
2016) and Newton-Raphson implementation (the gradients, Appendix A, and Hessian,
Appendix B, were computed by hand and implemented). Running this complete R

implementation in a scenario with 20 thousand data points and clusters of size 2, took
around 30 hours, parallelizing it between all threads of system 1. In summary, by using
TMB we were able to increase the model size 3 times and to decrease the computational
time 60 times. An incredible performance gain.

Still, with the complete model, we performed a Bayesian analysis via tmbstan

(MONNAHAN; KRISTENSEN, 2018). tmbstan enables MCMC sampling (GELFAND;

72

SMITH, 1990; DIACONIS, 2009) from a TMB model object using Stan (Stan Development
Team, 2019; Stan Development Team, 2020). Sampling can be performed with or without
a Laplace approximation for the random effects, based on the probably state-of-art
MCMC sampler algorithm, a Hamiltonian Monte Carlo (HMC) algorithm with the
No-U-Turn Sampler (NUTS) extension (HOFFMAN; GELMAN, 2014). We performed
just one Bayesian model fitting in a modest scenario with 5 thousand data points and
clusters of size 2. It took around 1 whole week of parallelized processing in system
1. The results were basically the same as the ones obtained with TMB but this high
computational time just reinforces the, still, MCMC framework limitation.

An important point to be made here is about TMB’s memory consumption. As
the sample size increases, the dimension of the model matrices also increases. This,
summed to a high number of clusters (Laplace approximations to be performed), turns
out to be a computational nightmare. For several models, even the 16GB RAM of system
1 was not enough. The bottleneck appears to be in the AD tape, which is made in
parallel, by default, if the model fitting is in parallel. By turning this option off (line
11 of Section D.4 (Appendix D) code), we were able to save a lot of memory, making
several models practicable.

Model the CIF of clustered competing risks data is far from being trivial or
straightforward. The formulation in Equation 3.1 implies the desired curve behavior,
Figure 10. However, in counterpart, its derivatives w.r.t. time, generates very small prob-
abilities for the failure competing causes, ending by concentrating almost everything on
censorship, Figure 11. For each competing cause with poor data representativity, we
have three curve shape parameters to estimate, implying the necessity of having a lot of
data to then have enough information about the causes.

We proposed for our multiGLMM an ideally complete latent-effects formulation
i.e., correlated latent effects on both levels, instantaneous risk and failure time trajectory.
The main underlying idea of the Chapter 5 simulation study was to see in which
scenarios we would be able to learn all the involved mean and covariance parameters.
As part of that, simpler formulations were proposed i.e., latent-effects in only one level,
or in both but without cross-correlations. As result, we got that latent effects only in
the risk level did not work. The optimization appears to get lost as if something is
missing. Inserting latent effects only in the failure time trajectory level returned better
results, but still not satisfactorily good. In most of the evaluated scenarios, the block-
diagonal model appeared to be in the middle of them, as a compromise. The best results
(smallest parameter estimates biases) were obtained with the complete model i.e. when
we consider the cross-correlations between levels. In general, we still observe some high
variances between the parameter estimates, but given all the problem characteristics
mentioned earlier, sounds to be reasonable. On average, the complete model works fine,

73

mainly in the scenarios of high CIF configuration, and also as expected, as the sample
size increases. We can also say that as the cluster size increases, the estimates get better
but we did not have very strong results supporting that.

6.1 ADDITIONAL CONSIDERATIONS

The next step was to compare our results with the ones obtained in Cederkvist
et al. (2019), with the composite approach. In the GitHub repository 〈https://github.
com/kkholst/mcif/〉 the authors provide their code. In mcif/inst/examples/datasim.R

they show how to simulate from the model, and in mcif/src/loglik.cpp they have their
marginal log-likelihood function. We tried to optimize their marginal log-likelihood
over its parameters using basically all R base::optim() and base::nlminb() available
methods, in the paper was used the BFGS, one of them. We made several scenarios,
using their own simulation scripts and ours, and to our surprise, the model basically
does not work.

The optimization in its majority fails, via any gradient-based algorithm (BFGS
(NOCEDAL; WRIGHT, 2006), PORT (GAY, 1990; DENNIS; GAY; WELSCH, 1981),
conjugate gradient (CG) (FLETCHER; REEVES, 1964)), generally by Hessian matrix
instability problems, a problem which our model also suffers from when we try to
compute the parameter estimates standard errors. When the model works, it is because
we are using the parameter true values as initial guesses i.e. if the algorithm needs to
walk on the log-likelihood surface following the gradient, it fails. Even when it works,
the estimates are not always good. We also tried with a SANN and a Nelder-Mead
algorithm. SANN (BELISLE, 1992) is a variant of a simulated annealing method, based
on a Metropolis algorithm. Since it is based on simulation, it takes a lot of time and as the
gradient-based methods, do not work most of the time. The best results were with the
Nelder-Mead (NELDER; MEAD, 1965), a gradient-free method. Still, it only works when
we use the parameter true values as initial guesses. This situation is completely the
opposite of what is shown in the paper, making impossible any reasonable comparison
between the models. We will enter in contact with the authors to see what is happening.

6.2 FUTURE WORKS

As show in Chapter 5 results, even with the complete model specification, the
parameter estimates present an excessive variance. In terms of a traditional GLMM
specification (MCCULLOCH; SEARLE, 2001), we do not have a lot more to do. We
are already using a smart quasi-Newton algorithm (DENNIS; GAY; WELSCH, 1981),
the most efficient derivatives computation technique (AD) (PEYRé, 2020), and an also
efficient Laplace approximation routine (WOOD, 2015; BONAT; RIBEIRO-JR, 2016), via

https://github.com/kkholst/mcif/
https://github.com/kkholst/mcif/

74

TMB (KRISTENSEN et al., 2016). We could change the Laplace approximation for an
adaptative Gaussian quadrature (PINHEIRO; CHAO, 2006), but we do not see any good
reason to do that.

There are two possible paths here. We could instead of a conditional modeling
framework (GLMM/latent-effects model), employ a marginal modeling framework. In
this framework, instead of caring about the specification of a probability distribution
to the competing causes conditioned on the latent effects, we just care about the speci-
fication of a mean and a variance structure. This approach does not have a likelihood
function per se, but the estimation procedure tends to be easier than with the GLMM
one. A marginal modeling framework that can be used here is the multivariate covari-
ance generalized linear model (McGLM) (BONAT; JØRGENSEN, 2016; BONAT, 2018).
How to exactly model the CIF of clustered competing risks data in this framework, is
something to still be figured out.

The other path is by the use of a different way of modeling the dependence
structure. Instead of a latent-effects approach, we could use copulas (EMBRECHTS,
2009; SCHEIKE; ZHANG; JENSEN, 2010; MASAROTTO; VARIN, 2012; KRUPSKII; JOE,
2013). How to do that is something to still be figured out by us, in terms of which kind
(conditional or marginal) and version (Archimedean-, Gauss-, Maltesian-, t-, hyperbolic-,
zebra-, and elliptical-) of copula to use, besides the estimability issue.

75

BIBLIOGRAPHY

ANDERSEN, P. K.; GESKUS, R. B.; WITTE, T. de; PUTTER, H. Competing risks in
epidemiology: possibilities and pitfalls. International Journal of Epidemiology, v. 31, n. 1, p.
861–870, 2012. Cited 2 times on pages 17 and 70.

BATES, D.; MAECHLER, M. Matrix: Sparse and Dense Matrix Classes and Methods. R
Foundation for Statistical Computing. Vienna, Austria, 2019. R package version 1.2-18
〈https://CRAN.R-project.org/package=Matrix〉. Cited on page 35.

BELISLE, C. J. P. Convergence theorems for a class of simulated annealing algorithms
on Rd. Journal of Applied Probability, v. 29, n. 1, p. 885–895, 1992. Cited on page 73.

BONAT, W. H. Multiple Response Variables Regression Models in R: The mcglm Package.
Journal of Statistical Software, v. 84, n. 4, 2018. Cited on page 74.

BONAT, W. H.; JØRGENSEN, B. Multivariate covariance generalized linear models.
Journal of the Royal Statistical Society, Series C (Applied Statistics), v. 65, n. 5, p. 649–675,
2016. Cited on page 74.

BONAT, W. H.; RIBEIRO-JR, P. J. Practical likelihood analysis for spatial generalized
linear mixed models. Environmetrics, v. 27, n. 1, p. 83–89, 2016. Cited 6 times on pages
19, 24, 26, 70, 71, and 73.

BRESLOW, N. E.; CLAYTON, D. G. Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, v. 88, n. 421, p. 9–25, 1993. Cited
on page 19.

CEDERKVIST, L.; HOLST, K. K.; ANDERSEN, K. K.; SCHEIKE, T. H. Modeling the
cumulative incidence function of multivariate competing risks data allowing for
within-cluster dependence of risk and timing. Biostatistics, v. 20, n. 2, p. 199–217, 2019.
Cited 14 times on pages 7, 8, 9, 15, 18, 20, 38, 39, 40, 41, 49, 52, 70, and 73.

CHENG, Y.; FINE, J. P. Cumulative Incidence Association Models for Bivariate
Competing Risks Data. Journal of the Royal Statistical Society, Series B (Statistical
Methodology), v. 74, n. 2, p. 183–202, 2012. Cited on page 18.

CHENG, Y.; FINE, J. P.; KOSOROK, M. R. J. Nonparametric Association Analysis of
Bivariate Competing-Risks Data. Journal of the American Statistical Association, v. 102,
n. 480, p. 1407–1415, 2007. Cited on page 18.

CHENG, Y.; FINE, J. P.; KOSOROK, M. R. J. Nonparametric Association Analysis of
Exchangeable Clustered Competing Risks Data. Biometrics, v. 65, n. 1, p. 385–393, 2009.
Cited on page 18.

CLAYTON, D. G. A model for association in bivariate life tables and its application in
epidemiological studies of familial rendency in chronic disease incidence. Biometrika,
v. 65, n. 1, p. 141–151, 1978. Cited on page 17.

COX, D. R.; REID, N. A note on pseudolikelihood constructed from marginal densities.
Biometrika, v. 91, n. 3, p. 729–737, 2004. Cited 2 times on pages 18 and 70.

https://CRAN.R-project.org/package=Matrix

76

DEMPSTER, A. P.; LAIRD, N. M.; RUBIN, D. B. Maximum likelihood estimation from
incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical
Society, Series B (Methodological), v. 39, n. 1, p. 1–38, 1977. Cited on page 24.

DENNIS, J. E.; GAY, D. M.; WELSCH, R. E. An Adaptive Nonlinear Least-Squares
Algorithm. ACM Transactions on Mathematical Software, v. 7, n. 3, p. 348–368, 1981. Cited
2 times on pages 28 and 73.

DIACONIS, P. The Markov chain Monte Carlo revolution. Bulletin (New Series) of the
American Mathematical Society, v. 46, n. 2, p. 179–205, 2009. Cited 2 times on pages 23
and 72.

EMBRECHTS, P. Copulas: A Personal View. The Journal of Risk and Insurance, v. 76, n. 3,
p. 639–650, 2009. Cited on page 74.

FINE, J. P. Analysing competing risks data with transformation models. Journal of the
Royal Statistical Society, Series B (Methodological), v. 61, n. 4, p. 817–830, 1999. Cited on
page 18.

FINE, J. P.; GRAY, R. J. A proportional hazards models for the subdistribution of a
competing risk. Journal of the American Statistical Association, v. 94, n. 446, p. 496–509,
1999. Cited on page 17.

FLETCHER, R.; REEVES, C. M. Function minimization by conjugate gradients.
Computer Journal, v. 7, n. 1, p. 148–154, 1964. Cited on page 73.

FOURNIER, D. A.; SKAUG, H. J.; ANCHETA, J.; IANELLI, J.; MAGNUSSON, A.;
MAUNDER, M. N.; NIELSEN, A.; SIBERT, J. AD Model Builder: using automatic
differentiation for statistical inference of highly parameterized complex nonlinear
models. Optimization Methods and Software, v. 27, n. 2, p. 233–249, 2012. Cited on page
32.

GAY, D. M. Usage summary for selected optimization routines. Computing Science Technical
Report 153, AT&T Bell Laboratories. Murray Hill, NJ, 1990. Cited 2 times on pages 28
and 73.

GELFAND, A. E.; SMITH, A. F. M. Sampling-Based Approaches to Calculating
Marginal Densities. Journal of the American Statistical Association, v. 85, n. 410, p. 398–409,
1990. Cited 2 times on pages 23 and 72.

GERDS, T. A.; SCHEIKE, T. H.; ANDERSEN, P. K. Absolute risk regression for
competing risks: interpretation, link functions and prediction. Statistics in Medicine,
v. 31, n. 29, p. 3921–3930, 2012. Cited on page 18.

GUENNEBAUD, G.; JACOB, B. et al. Eigen v3. 2010. 〈http://eigen.tuxfamily.org〉.
Cited on page 33.

HOFFMAN, M. D.; GELMAN, A. The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, v. 15, n. 47, p.
1593–1623, 2014. Cited on page 72.

HOUGAARD, P. Analysis of Multivariate Survival Data. New York: Springer-Verlag, 2000.
Cited on page 17.

http://eigen.tuxfamily.org

77

KALBFLEISCH, J. D.; PRENTICE, R. L. The Statistical Analysis of Failure Time Data.
Second Edition. Hoboken, New Jersey: John Wiley & Sons, Inc., 2002. Cited 5 times on
pages 15, 16, 17, 38, and 70.

KLEIN, J. P. Semiparametric estimation of random effects using cox model based on the
em algorithm. Biometrics, v. 48, n. 1, p. 795–806, 1992. Cited on page 17.

KRISTENSEN, K.; NIELSEN, A.; BERG, C. W.; SKAUG, H. J.; BELL, B. M. TMB:
Automatic Differentiation and Laplace Approximation. Journal of Statistical Software,
v. 70, n. 5, p. 1–21, 2016. Cited 10 times on pages 7, 8, 19, 20, 22, 32, 35, 45, 70, and 74.

KRUPSKII, P.; JOE, H. Factor copula models for multivariate data. Journal of Multivariate
Analysis, v. 120, n. 1, p. 85–101, 2013. Cited on page 74.

KUK, A. Y. C. A semiparametric mixture model for the analysis of competing risks data.
Australian Journal of Statistics, v. 34, n. 2, p. 169–180, 1992. Cited on page 17.

LAIRD, N. M.; WARE, J. H. Random-effects models for longitudinal data. Biometrics,
v. 38, n. 4, p. 963–974, 1982. Cited on page 19.

LARSON, M. G.; DINSE, G. E. A Mixture Model for the Regression Analysis of
Competing Risks Data. Journal of the Royal Statistical Society, Series C (Applied Statistics),
v. 34, n. 3, p. 201–211, 1985. Cited on page 17.

LIANG, K. Y.; SELF, S.; BANDEEN-ROCHE, K. J.; ZEGER, S. L. Some recent
developments for regression analysis of multivariate failure time data. Lifetime Data
Analysis, v. 1, n. 1, p. 403–415, 1995. Cited on page 17.

LINDSAY, B. G. Composite likelihood methods. Comtemporary Mathematics, v. 80, n. 1, p.
221–239, 1988. Cited 2 times on pages 18 and 70.

MASAROTTO, G.; VARIN, C. Gaussian copula marginal regression. Electronic Journal of
Statistics, v. 6, n. 1, p. 1517–1549, 2012. Cited on page 74.

MCCULLAGH, P.; NELDER, J. A. Generalized linear models. Second edition. London:
Chapman & Hall, 1989. Cited 2 times on pages 19 and 70.

MCCULLOCH, C. E.; SEARLE, S. R. Generalized, Linear, and Mixed Models. New York:
John Wiley & Sons, Inc., 2001. Cited 4 times on pages 19, 22, 70, and 73.

MOLENBERGHS, G.; VERBEKE, G. Models for Discrete Longitudinal Data. New York:
Springer, 2005. Cited on page 24.

MONNAHAN, C.; KRISTENSEN, K. No-U-turn sampling for fast Bayesian inference in
ADMB and TMB: Introducing the adnuts and tmbstan R packages. PloS ONE, v. 13, n. 5,
2018. Cited on page 71.

NASKAR, M.; DAS, K.; IBRAHIM, J. G. A Semiparametric Mixture Model for
Analyzing Clustered Competing Risks Data. Biometrics, v. 61, n. 3, p. 729–737, 2005.
Cited on page 18.

NELDER, J. A.; MEAD, R. A simplex algorithm for function minimization. Computer
Journal, v. 7, n. 1, p. 308–313, 1965. Cited on page 73.

78

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized linear models. Journal of the
Royal Statistical Society, Series A, v. 135, n. 3, p. 370–384, 1972. Cited on page 19.

NIELSEN, G. G.; GILL, R. D.; ANDERSEN, P. K.; SØRENSEN, T. I. A. A Counting
Process Approach to Maximum Likelihood Estimation in Frailty Models. Scandinavian
Journal of Statistics, v. 19, n. 1, p. 25–43, 1992. Cited on page 17.

NOCEDAL, J.; WRIGHT, S. J. Numerical Optimization. Second Edition. New York:
Springer, 2006. (Springer Series in Operations Research and Financial Engineering).
Cited 5 times on pages 27, 28, 29, 70, and 73.

PETERSEN, J. H. An Additive Frailty Model for Correlated Life Times. Biometrics, v. 54,
n. 1, p. 646–661, 1998. Cited on page 17.

PEYRé, G. Course notes on Optimization for Machine Learning. 2020. May 10,
〈https://mathematical-tours.github.io/book-sources/optim-ml/OptimML.pdf〉.
CNRS & DMA, École Normale Supérieure. Cited 4 times on pages 19, 29, 30, and 73.

PINHEIRO, J. C.; BATES, D. M. Unconstrained parametrizations for variance-covariance
matrices. Statistics and Computing, v. 6, n. 3, p. 289–296, 1996. Cited on page 45.

PINHEIRO, J. C.; CHAO, E. C. Efficient Laplacian and Adaptive Gaussian Quadrature
Algorithms for Multilevel Generalized Linear Mixed Models. Journal of Computational
and Graphical Statistics, v. 15, n. 1, p. 58–81, 2006. Cited 2 times on pages 24 and 74.

POURAHMADI, M. Cholesky decompositions and estimation of a covariance matrix:
orthogonality of variance-correlation parameters. Biometrika, v. 94, n. 4, p. 1006–1013,
2007. Cited on page 46.

PRENTICE, R. L.; KALBFLEISCH, J. D.; Peterson Jr, A. V.; FLOURNOY, N.; FAREWELL,
V. T.; BRESLOW, N. E. The analysis of failure times in the presence of competing risks.
Biometrics, v. 1, n. 1, p. 541–554, 1978. Cited on page 17.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing. Vienna, Austria, 2021. 〈https://www.R-project.org/〉. Cited 7
times on pages 7, 8, 19, 22, 28, 32, and 70.

SCHEIKE, T.; SUN, Y. On cross-odds ratio for multivariate competing risks data.
Biostatistics, v. 13, n. 4, p. 680–694, 2012. Cited on page 18.

SCHEIKE, T.; ZHANG, Y. S. M.; JENSEN, T. K. A semiparametric random effects model
for multivariate competing risks. Biometrika, v. 97, n. 1, p. 133–145, 2010. Cited 2 times
on pages 18 and 74.

SHI, H.; CHENG, Y.; JEONG, J. H. Constrained parametric model for simultaneous
inference of two cumulative incidence functions. Biometrical Journal, v. 55, n. 1, p. 82–96,
2013. Cited on page 18.

SHIH, J. H.; ALBERT, P. S. Modeling Familial Association of Ages at Onset of Disease in
the Presence of Competing Risk. Biometrics, v. 66, n. 4, p. 1012–1023, 2009. Cited on
page 18.

https://mathematical-tours.github.io/book-sources/optim-ml/OptimML.pdf
https://www.R-project.org/

79

SHUN, Z.; MCCULLAGH, P. Laplace approximation of high dimentional integrals.
Journal of the Royal Statistical Society, Series B (Methodological), v. 57, n. 4, p. 749–760, 1995.
Cited on page 24.

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual.
Version 2.26, 2019. 〈https://mc-stan.org〉. Cited on page 72.

Stan Development Team. RStan: the R interface to Stan. 2020. 〈https://mc-stan.org/〉. R
package version 2.21.2. Cited on page 72.

THERNEAU, T. M.; GRAMBSCH, P. M. Modeling Survival Data: Extending the Cox Model.
New York: Springer-Verlag, 2000. Cited on page 17.

TIERNEY, L.; KADANE, J. Accurate approximations for posterior moments and
marginal densities. Journal of the American Statistical Association, v. 81, n. 393, p. 82–86,
1986. Cited 2 times on pages 24 and 70.

VALPEL, J. W.; MANTON, K. G.; STALLARD, E. The impact of heterogeneity in
Individual Frailty on the Dynamics of Mortality. Demography, v. 16, n. 1, p. 439–454,
1979. Cited on page 17.

VARIN, C.; REID, N.; FIRTH, D. An overview of composite likelihood methods.
Statistica Sinica, v. 21, n. 1, p. 5–42, 2011. Cited 2 times on pages 18 and 70.

Ver HOEF, J. M. Who Invented the Delta Method? The American Statistician, v. 66, n. 2, p.
124–127, 2012. Cited on page 36.

WOOD, S. N. Core Statistics. IMS: Institute of Mathematical Statistics, Textbooks, 2015.
Cited 6 times on pages 19, 24, 25, 29, 70, and 73.

https://mc-stan.org
https://mc-stan.org/

Appendix

81

APPENDIX A – ANALYTIC GRADIENT OF THE LATENT EFFECTS FOR THE JOINT

LOG-LIKELIHOOD FUNCTION OF THE MULTINOMIAL GLMM FOR CLUSTERED

COMPETING RISKS DATA

The following gradient components are computed by cluster, to be used e.g., in
a Newton optimization. Subject i at cluster j and for competing cause k

∂

∂ukj
log L(θ | yj,rj) =

ykij
1 + ∑K−1

m 6=k exp{xmijβmj + umj}
1 + ∑K−1

n=1 exp{xnijβnj + unj}
−
(

K−1

∑
m 6=k

ymij

)
exp{xkijβkj + ukj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}

−

yKij
1

1 + ∑K−1
n=1 exp{xnijβnj + unj}

(
exp{xkijβkj + ukj}

(
1 + ∑K−1

m 6=k exp{xmijβmj + umj}
)

1 + ∑K−1
n=1 exp{xnijβnj + unj}

×

wk
δ

2δt−2t2 φ[wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj]

1− wn
δ

2δt−2t2 φ[wnarctanh
(

t−δ/2
δ/2

)
− xnijγnj − ηnj]

−
exp{xkijβkj + ukj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}

×

∑K−1
m 6=k wm

δ
2δt−2t2 φ[wmarctanh

(
t−δ/2

δ/2

)
− xmijγmj − ηmj]exp{xmijβmj + umj}

1− wn
δ

2δt−2t2 φ[wnarctanh
(

t−δ/2
δ/2

)
− xnijγnj − ηnj]

)
−

e>k Qrj,

∂

∂ηkj
log L(θ | yj,rj) =

ykij(wkarctanh
(

t− δ/2
δ/2

)
− xkijγkj − ηkj)−

yKij
exp{xkijβkj + ukj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}

×

wk
δ

2δt−2t2 (wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj)φ[wkarctanh

(
t−δ/2

δ/2

)
− xkijγkj − ηkj]

1−∑K−1
n=1

exp{xnijβnj+unj}
1+∑K−1

n=1 exp{xnijβnj+unj}
wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj]

−

e>k Qrj,

with e>k begin a vector with 1 at the k-th position and zero elsewhere.

82

APPENDIX B – ANALYTIC HESSIAN OF THE LATENT EFFECTS FOR THE JOINT

LOG-LIKELIHOOD FUNCTION OF THE MULTINOMIAL GLMM FOR CLUSTERED

COMPETING RISKS DATA

The following hessian components are computed by cluster, to be used e.g., in
a Newton optimization. Subject i at cluster j and for competing cause k

∂2

∂u2
kj

log L(θ | yj,rj) =

−

(
∑K−1

k=1 ykij

)
exp{xkijβkj + ukj}

(
1 + ∑K−1

m 6=k exp{xmijβmj + umj}
)

(
1 + ∑K−1

n=1 exp{xnijβnj + unj}
)2 +

yKij exp{xkijβkj + ukj}
1 + ∑K−1

n=1 exp{xnijβnj + unj}
×

∑K−1
m 6=k wm

δ
2δt−2t2 φ[wmarctanh

(
t−δ/2

δ/2

)
− xmijγmj − ηmj]exp{xmijβmj + umj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}(1− wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj])

−

yKijwk
δ

2δt−2t2 φ[wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj]

1 + ∑K−1
n=1 exp{xnijβnj + unj}

×

exp{xkijβkj + ukj}
(

1 + ∑K−1
m 6=k exp{xmijβmj + umj}

)
1 + ∑K−1

n=1 exp{xnijβnj + unj}(1− wn
δ

2δt−2t2 φ[wnarctanh
(

t−δ/2
δ/2

)
− xnijγnj − ηnj])

−

yKij exp{xkijβkj + ukj}(
1 + ∑K−1

n=1 exp{xnijβnj + unj}
)2

(

∑K−1
m 6=k wm

δ
2δt−2t2 φ[wmarctanh

(
t−δ/2

δ/2

)
− xmijγmj − ηmj]exp{xmijβmj + umj}(

1 + ∑K−1
n=1 exp{xnijβnj + unj}(1− wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj])

)2−

wk
δ

2δt−2t2 φ[wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj]

(
1 + ∑K−1

m 6=k exp{xmijβmj + umj}
)

(
1 + ∑K−1

n=1 exp{xnijβnj + unj}(1− wn
δ

2δt−2t2 φ[wnarctanh
(

t−δ/2
δ/2

)
− xnijγnj − ηnj])

)2

)

×
((

1+

K−1

∑
n=1

exp{xnijβnj + unj}(1− wn
δ

2δt− 2t2 φ[wnarctanh
(

t− δ/2
δ/2

)
− xnijγnj − ηnj])

)
+

(
1 +

K−1

∑
n=1

exp{xnijβnj + unj}
)
×

(1− wk
δ

2δt− 2t2 φ[wkarctanh
(

t− δ/2
δ/2

)
− xkijγkj − ηkj])

)
− e>k Q,

83

∂2

∂η2
kj

log L(θ | yj,rj) =

− ykij − yKij
exp{xkijβkj + ukj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}

(

wk
δ

2δt− 2t2 φ[wkarctanh
(

t− δ/2
δ/2

)
− xkijγkj − ηkj]×(

wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj

)2
− 1

1−∑K−1
n=1

exp{xnijβnj+unj}
1+∑K−1

n=1 exp{xnijβnj+unj}
wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj]

−

(
wk

δ
2δt−2t2 (wkarctanh

(
t−δ/2

δ/2

)
− xkijγkj − ηkj)φ[wkarctanh

(
t−δ/2

δ/2

)
− xkijγkj − ηkj]

)2

(
1−∑K−1

n=1
exp{xnijβnj+unj}

1+∑K−1
n=1 exp{xnijβnj+unj}

wn
δ

2δt−2t2 φ[wnarctanh
(

t−δ/2
δ/2

)
− xnijγnj − ηnj]

)2

)
− e>k Q,

∂2

∂ukjumj
log L(θ | yj,rj) =(

K−1

∑
k=1

ykij

)
exp{xkijβkj + ukj}exp{xmijβmj + umj}(

1 + ∑K−1
n=1 exp{xnijβnj + unj}

)2 +

yKij exp{xkijβkj + ukj}exp{xmijβmj + umj}
1 + ∑K−1

n=1 exp{xnijβnj + unj}

(
wm

δ
2δt−2t2 φ[wmarctanh

(
t−δ/2

δ/2

)
− xmijγmj − ηmj]

1 + ∑K−1
n=1 exp{xnijβnj + unj}(1− wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj])

−

wk
δ

2δt−2t2 φ[wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj]

1 + ∑K−1
n=1 exp{xnijβnj + unj}(1− wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj])

)
−

yKij(
1 + ∑K−1

n=1 exp{xnijβnj + unj}
)2

(
exp{xkijβkj + ukj}

(

∑K−1
m 6=k wm

δ
2δt−2t2 φ[wmarctanh

(
t−δ/2

δ/2

)
− xmijγmj − ηmj]exp{xmijβmj + umj}(

1 + ∑K−1
n=1 exp{xnijβnj + unj}(1− wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj])

)2−

wk
δ

2δt−2t2 φ[wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj]

(
1 + ∑K−1

m 6=k exp{xmijβmj + umj}
)

(
1 + ∑K−1

n=1 exp{xnijβnj + unj}(1− wn
δ

2δt−2t2 φ[wnarctanh
(

t−δ/2
δ/2

)
− xnijγnj − ηnj])

)2

)

84

)
×
(

exp{xmijβmj + umj}
(

1+

K−1

∑
n=1

exp{xnijβnj + unj}(1− wn
δ

2δt− 2t2 φ[wnarctanh
(

t− δ/2
δ/2

)
− xnijγnj − ηnj])

)
+

exp{xmijβmj + umj}(1− wm
δ

2δt− 2t2 φ[wmarctanh
(

t− δ/2
δ/2

)
− xmijγmj − ηmj])

(
1+

K−1

∑
n=1

exp{xnijβnj + unj}
))
− e>k Q,

∂2

∂ηkjηmj
log L(θ | yj,rj) =

− yKij
exp{xkijβkj + ukj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}

×

wk
δ

2δt−2t2 (wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj)φ[wkarctanh

(
t−δ/2

δ/2

)
− xkijγkj − ηkj](

1−∑K−1
n=1

exp{xnijβnj+unj}
1+∑K−1

n=1 exp{xnijβnj+unj}
wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj]

)2×

exp{xmijβmj + umj}
1 + ∑K−1

n=1 exp{xnijβnj + unj}
wm

δ

2δt− 2t2 (wmarctanh
(

t− δ/2
δ/2

)
− xmijγmj − ηmj)×

φ[wmarctanh
(

t− δ/2
δ/2

)
− xmijγmj − ηmj]− e>k Q,

∂2

∂ηkjukj
log L(θ | yj,rj) =

yKij
exp{xkijβkj + ukj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}

×

wk
δ

2δt−2t2 (wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj)φ[wkarctanh

(
t−δ/2

δ/2

)
− xkijγkj − ηkj)](

1−∑K−1
n=1

exp{xnijβnj+unj}
1+∑K−1

n=1 exp{xnijβnj+unj}
wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj]

)2×

(
K−1

∑
n 6=k

exp{xnijβnj + unj}exp{xkijβkj + ukj}(
1 + ∑K−1

n=1 exp{xnijβnj + unj}
)2 ×

wn
δ

2δt− 2t2 φ[wnarctanh
(

t− δ/2
δ/2

)
− xnijγnj − ηnj]−

exp{xkijβkj + ukj}
((

1 + ∑K−1
n=1 exp{xnijβnj + unj}

)
− exp{xkijβkj + ukj}

)
(

1 + ∑K−1
n=1 exp{xnijβnj + unj}

)2 ×

wk
δ

2δt− 2t2 φ[wkarctanh
(

t− δ/2
δ/2

)
− xkijγkj − ηkj]

)
−

85

yKij

exp{xkijβkj+ukj}((1+∑K−1
n=1 exp{xnijβnj+unj})−exp{xkijβkj+ukj})

(1+∑K−1
n=1 exp{xnijβnj+unj})

2

1−∑K−1
n=1

exp{xnijβnj+unj}
1+∑K−1

n=1 exp{xnijβnj+unj}
wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj]

×

wk
δ

2δt− 2t2 (wkarctanh
(

t− δ/2
δ/2

)
− xkijγkj − ηkj)×

φ[wkarctanh
(

t− δ/2
δ/2

)
− xkijγkj − ηkj]− e>k Q,

∂2

∂ηkjumj
log L(θ | yj,rj) =

yKij
exp{xkijβkj + ukj}exp{xmijβmj + umj}(

1 + ∑K−1
n=1 exp{xnijβnj + unj}

)2 ×

wk
δ

2δt−2t2 (wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj)φ[wkarctanh

(
t−δ/2

δ/2

)
− xkijγkj − ηkj)]

1−∑K−1
n=1

exp{xnijβnj+unj}
1+∑K−1

n=1 exp{xnijβnj+unj}
wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj]

+

yKij
exp{xkijβkj + ukj}

1 + ∑K−1
n=1 exp{xnijβnj + unj}

×

wk
δ

2δt−2t2 (wkarctanh
(

t−δ/2
δ/2

)
− xkijγkj − ηkj)φ[wkarctanh

(
t−δ/2

δ/2

)
− xkijγkj − ηkj)](

1−∑K−1
n=1

exp{xnijβnj+unj}
1+∑K−1

n=1 exp{xnijβnj+unj}
wn

δ
2δt−2t2 φ[wnarctanh

(
t−δ/2

δ/2

)
− xnijγnj − ηnj]

)2×

(
K−1

∑
n 6=m

exp{xnijβnj + unj}exp{xmijβmj + umj}(
1 + ∑K−1

n=1 exp{xnijβnj + unj}
)2 ×

wn
δ

2δt− 2t2 φ[wnarctanh
(

t− δ/2
δ/2

)
− xnijγnj − ηnj]−

exp{xmijβmj + umj}
((

1 + ∑K−1
n=1 exp{xnijβnj + unj}

)
− exp{xmijβmj + umj}

)
(

1 + ∑K−1
n=1 exp{xnijβnj + unj}

)2 ×

wm
δ

2δt− 2t2 φ[wmarctanh
(

t− δ/2
δ/2

)
− xmijγmj − ηmj]

)
− e>k Q,

with e>k begin a vector with 1 at the k-th position and zero elsewhere.

86

APPENDIX C – R CODE TO SIMULATE FROM A multiGLMM WITH TWO COMPETING

CAUSES AND CLUSTERS OF SIZE TWO. FOR MORE INFORMATION CHECK SECTION 4.1

1 library(mvtnorm) ## install.packages('mvtnorm ')

2 library(tidyverse) ## install.packages('tidyverse ')

3 library(mc2d) ## install.packages('mc2d ')

4
5 datasimu <- function(J, ## number of clusters

6 cs, ## clusters size (all the same size)

7 time , ## failure , censorship times

8 Z, ## latent effects design -matrix

9 S, ## variance -covariance matrix

10 delta=80,

11 beta =c(beta1=-2.0, beta2 =-1.5),

12 gamma=c(gamma1= 1.2, gamma2= 1.0),

13 w =c(w1= 3.0, w2= 5.0),

14 seed1=NULL ,

15 seed2=NULL)

16 {

17 out <- tibble :: tibble(i=rep(seq(cs), times=J), ## cluster element

18 j=rep(seq(J), each=cs), ## cluster

19 time=time ,

20 p1=NA,

21 p2=NA,

22 p3=NA)

23
24 K <- dim(S)[1]/2 + 1

25 ladim <- 2*(K-1) ## latent effects dimension

26 set.seed(seed1)

27 U <- mvtnorm :: rmvnorm(J, mean=rep(0, ladim), sigma=S)

28 ZU <- Z%*%U

29 risk1 <- exp(beta['beta1 '] + ZU[, 1])

30 risk2 <- exp(beta['beta2 '] + ZU[, 2])

31 level <- 1 + risk1 + risk2

32 gt <- atanh(2*time/delta - 1)

33 dgt <- delta/(2*time*(delta - time))

34 x1 <- w['w1']*gt - gamma['gamma1 '] - ZU[, 3]

35 x2 <- w['w2']*gt - gamma['gamma2 '] - ZU[, 4]

36
37 out$p1 <- risk1/level*w['w1']*dgt*dnorm(x1)

38 out$p2 <- risk2/level*w['w2']*dgt*dnorm(x2)

39
40 out <- out %>% dplyr:: mutate(p3=1-p1-p2)

41 set.seed(seed2)

42 y <- mc2d:: rmultinomial(cs*J, 1, prob=out%>%select(p1:p3))

43
44 out <- out %>%

87

45 dplyr::bind_cols(tibble ::as_tibble(y)) %>%

46 dplyr:: rename(y1=V1, y2=V2, y3=V3)

47 return(out)

48 }

49 J <- 50e3

50 cs <- 2

51 time <- runif(n=cs*J, min=30, max =79.9)

52 Z <- Matrix ::bdiag(replicate(J, rep(1, cs), simplify=FALSE))

53 S <- matrix(c(1.0, 0.4, -0.1, 0.4,

54 0.4, 1.0, 0.4, -0.1,

55 -0.1, 0.4, 1.0, 0.4,

56 0.4, -0.1, 0.4, 1.0), 4)

57 dat <- datasimu(J=J, cs=cs, time=time , Z=Z, S=S, seed1=1, seed2 =2)

SOURCE: The author (2021).

88

APPENDIX D – C++ CODES FOR THE TMB IMPLEMENTATION OF THE multiGLMM

COMPLETE MODEL’S SPECIAL CASES

D.1 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A

2× 2 LATENT STRUCTURE ON THE RISK LEVEL

1 // multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA

2 // 2x2 LATENT STRUCTURE ON THE RISK LEVEL (RISK MODEL)

3 #include <TMB.hpp >

4 template <class Type >

5 Type objective_function <Type >:: operator () ()

6 {

7 using namespace density;

8 DATA_MATRIX(Y);

9 DATA_SPARSE_MATRIX(Z);

10 DATA_VECTOR(time);

11 DATA_SCALAR(delta);

12 PARAMETER(beta1);

13 PARAMETER(beta2);

14 PARAMETER(gama1);

15 PARAMETER(gama2);

16 PARAMETER(w1);

17 PARAMETER(w2);

18 PARAMETER(logs2_1); Type s2_1=exp(logs2_1);

19 PARAMETER(logs2_2); Type s2_2=exp(logs2_2);

20 PARAMETER(rhoZ12); Type rho12=(exp(2*rhoZ12) -1)/(exp(2*rhoZ12)+1);

21
22 PARAMETER_MATRIX(U); matrix <Type > ZU=Z*U;

23 Type risk1 =0;

24 Type risk2 =0;

25 Type level =0;

26 // gt=atanh(2*time/delta -1); atanh(x)=0.5*log ((1+x)/(1-x))

27 vector <Type > gt=0.5*log(time/(delta -time));

28 vector <Type > dgt=delta/(2*time*(delta -time));

29 Type x1=0;

30 Type x2=0;

31 vector <Type > y(Y.cols());

32 vector <Type > prob(Y.cols());

33 parallel_accumulator <Type > nll(this);

34 // Type nll=0;

35 vector <Type > u(U.cols());

36
37 Type cov12=rho12*sqrt(s2_1)*sqrt(s2_2);

38 matrix <Type > Sigma(2, 2);

39 Sigma.row(0) << s2_1, cov12;

40 Sigma.row(1) << cov12 , s2_2;

89

41
42 MVNORM_t<Type > dmvnorm(Sigma);

43 for (int i=0; i<U.rows(); i++) {

44 u=U.row(i);

45 nll += dmvnorm(u);

46 }

47 for (int i=0; i<Y.rows(); i++) {

48 risk1=exp(beta1 + ZU(i, 0));

49 risk2=exp(beta2 + ZU(i, 1));

50 level=1 + risk1 + risk2;

51 x1=w1*gt(i) - gama1;

52 x2=w2*gt(i) - gama2;

53 prob (0)=risk1/level * w1*dgt(i) * dnorm(x1, Type (0), Type (1), false);

54 prob (1)=risk2/level * w2*dgt(i) * dnorm(x2, Type (0), Type (1), false);

55 prob (2)=1 - prob (0) - prob (1);

56 y=Y.row(i);

57 nll -= dmultinom(y, prob , true);

58 }

59 ADREPORT(s2_1);

60 ADREPORT(s2_2);

61 ADREPORT(rho12);

62 REPORT(Sigma);

63 return nll;

64 }

SOURCE: The author (2021).

D.2 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A

2× 2 LATENT STRUCTURE ON THE TRAJECTORY TIME LEVEL

1 // multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA

2 // 2x2 LATENT STRUCTURE ON THE TRAJECTORY TIME LEVEL (TIME MODEL)

3 #include <TMB.hpp >

4 template <class Type >

5 Type objective_function <Type >:: operator () ()

6 {

7 using namespace density;

8 DATA_MATRIX(Y);

9 DATA_SPARSE_MATRIX(Z);

10 DATA_VECTOR(time);

11 DATA_SCALAR(delta);

12 PARAMETER(beta1);

13 PARAMETER(beta2);

14 PARAMETER(gama1);

15 PARAMETER(gama2);

16 PARAMETER(w1);

90

17 PARAMETER(w2);

18 PARAMETER(logs2_3); Type s2_3=exp(logs2_3);

19 PARAMETER(logs2_4); Type s2_4=exp(logs2_4);

20 PARAMETER(rhoZ34); Type rho34=(exp(2*rhoZ34) -1)/(exp(2*rhoZ34)+1);

21
22 PARAMETER_MATRIX(U); matrix <Type > ZU=Z*U;

23 Type risk1=exp(beta1);

24 Type risk2=exp(beta2);

25 Type level=1 + risk1 + risk2;

26 // gt=atanh(2*time/delta -1); atanh(x)=0.5*log ((1+x)/(1-x))

27 vector <Type > gt=0.5*log(time/(delta -time));

28 vector <Type > dgt=delta/(2*time*(delta -time));

29 Type x1=0;

30 Type x2=0;

31 vector <Type > y(Y.cols());

32 vector <Type > prob(Y.cols());

33 parallel_accumulator <Type > nll(this);

34 // Type nll=0;

35 vector <Type > u(U.cols());

36
37 Type cov34=rho34*sqrt(s2_3)*sqrt(s2_4);

38 matrix <Type > Sigma(2, 2);

39 Sigma.row(0) << s2_3, cov34;

40 Sigma.row(1) << cov34 , s2_4;

41
42 MVNORM_t<Type > dmvnorm(Sigma);

43 for (int i=0; i<U.rows(); i++) {

44 u=U.row(i);

45 nll += dmvnorm(u);

46 }

47 for (int i=0; i<Y.rows(); i++) {

48 x1=w1*gt(i) - gama1 - ZU(i, 0);

49 x2=w2*gt(i) - gama2 - ZU(i, 1);

50 prob (0)=risk1/level * w1*dgt(i) * dnorm(x1, Type (0), Type (1), false);

51 prob (1)=risk2/level * w2*dgt(i) * dnorm(x2, Type (0), Type (1), false);

52 prob (2)=1 - prob (0) - prob (1);

53 y=Y.row(i);

54 nll -= dmultinom(y, prob , true);

55 }

56 ADREPORT(s2_3);

57 ADREPORT(s2_4);

58 ADREPORT(rho34);

59 REPORT(Sigma);

60 return nll;

61 }

SOURCE: The author (2021).

91

D.3 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A

BLOCK-DIAG 4× 4 LATENT STRUCTURE

1 // multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA

2 // BLOCK -DIAG LATENT STRUCTURE i.e., RISK , TRAJECTORY TIME , AND

3 // CROSS -CORRELATIONS SET AT ZERO (BLOCK -DIAG MODEL)

4 #include <TMB.hpp >

5 template <class Type >

6 Type objective_function <Type >:: operator () ()

7 {

8 using namespace density;

9 DATA_MATRIX(Y);

10 DATA_SPARSE_MATRIX(Z);

11 DATA_VECTOR(time);

12 DATA_SCALAR(delta);

13 PARAMETER(beta1);

14 PARAMETER(beta2);

15 PARAMETER(gama1);

16 PARAMETER(gama2);

17 PARAMETER(w1);

18 PARAMETER(w2);

19
20 PARAMETER(logs2_1); Type s2_1=exp(logs2_1);

21 PARAMETER(logs2_2); Type s2_2=exp(logs2_2);

22 PARAMETER(logs2_3); Type s2_3=exp(logs2_3);

23 PARAMETER(logs2_4); Type s2_4=exp(logs2_4);

24
25 PARAMETER(rhoZ12); Type rho12=(exp(2*rhoZ12) -1)/(exp(2*rhoZ12)+1);

26 PARAMETER(rhoZ34); Type rho34=(exp(2*rhoZ34) -1)/(exp(2*rhoZ34)+1);

27
28 PARAMETER_MATRIX(U1); matrix <Type > ZU1=Z*U1;

29 PARAMETER_MATRIX(U2); matrix <Type > ZU2=Z*U2;

30 Type risk1 =0;

31 Type risk2 =0;

32 Type level =0;

33 // gt=atanh(2*time/delta -1); atanh(x)=0.5*log ((1+x)/(1-x))

34 vector <Type > gt=0.5*log(time/(delta -time));

35 vector <Type > dgt=delta/(2*time*(delta -time));

36 Type x1=0;

37 Type x2=0;

38 vector <Type > y(Y.cols());

39 vector <Type > prob(Y.cols());

40 parallel_accumulator <Type > nll(this);

41 // Type nll=0;

42 vector <Type > u1(U1.cols());

43 vector <Type > u2(U2.cols());

44

92

45 Type cov12=rho12*sqrt(s2_1)*sqrt(s2_2);

46 Type cov34=rho34*sqrt(s2_3)*sqrt(s2_4);

47 matrix <Type > Sigma1(2, 2);

48 Sigma1.row(0) << s2_1, cov12;

49 Sigma1.row(1) << cov12 , s2_2;

50 matrix <Type > Sigma2(2, 2);

51 Sigma2.row(0) << s2_3, cov34;

52 Sigma2.row(1) << cov34 , s2_4;

53
54 MVNORM_t<Type > dmvnorm1(Sigma1);

55 MVNORM_t<Type > dmvnorm2(Sigma2);

56 for (int i=0; i<U1.rows(); i++) {

57 u1=U1.row(i);

58 nll += dmvnorm1(u1);

59 }

60 for (int i=0; i<U2.rows(); i++) {

61 u2=U2.row(i);

62 nll += dmvnorm2(u2);

63 }

64 for (int i=0; i<Y.rows(); i++) {

65 risk1=exp(beta1 + ZU1(i, 0));

66 risk2=exp(beta2 + ZU1(i, 1));

67 level=1 + risk1 + risk2;

68 x1=w1*gt(i) - gama1 - ZU2(i, 0);

69 x2=w2*gt(i) - gama2 - ZU2(i, 1);

70 prob (0)=risk1/level * w1*dgt(i) * dnorm(x1, Type (0), Type (1), false);

71 prob (1)=risk2/level * w2*dgt(i) * dnorm(x2, Type (0), Type (1), false);

72 prob (2)=1 - prob (0) - prob (1);

73 y=Y.row(i);

74 nll -= dmultinom(y, prob , true);

75 }

76 ADREPORT(s2_1);

77 ADREPORT(s2_2);

78 ADREPORT(s2_3);

79 ADREPORT(s2_4);

80 ADREPORT(rho12);

81 ADREPORT(rho34);

82 REPORT(Sigma1);

83 REPORT(Sigma2);

84 return nll;

85 }

SOURCE: The author (2021).

D.4 R CODE SHOWING HOW TO LOAD AND FIT THE multiGLMM VERSIONS

1 ## choose the desired MODEL to fit (risk , time , block -diag , complete)

93

2 dll <- 'MODEL '

3
4 library(TMB) ## install.packages('TMB ')

5 library(parallel) ## install.packages('parallel ')

6 library(Matrix) ## install.packages('Matrix ')

7
8 filename <- paste0(dll , '.cpp')

9 TMB:: compile(filename)

10 dyn.load(TMB:: dynlib(dll))

11 TMB:: config(tape.parallel=FALSE , DLL=dll) ## saves a lot of memory usage

12 ## if you want to make a multi -thread model fitting

13 TMB:: openmp(parallel :: detectCores ())

14
15 J <- 500 ## choose the number of clusters

16 cs <- 2 ## choose the cluster sizes

17 time <- runif(n=cs*J, min=30, max =79.9) ## generate the failure times

18 delta <- 80

19 blocks <- replicate(J, rep(1, cs), simplify=FALSE)

20 Z <- Matrix ::bdiag(blocks) ## build the latent -effect design -matrix

21
22 ## set the fixed -effect parameters

23 beta <- c(beta1=-2, beta2 =-1.5)

24 gamma <- c(gamma1 =1.2, gamma2 =1)

25 w <- c(w1=3, w2=5)

26 ## set the variances and correlations

27 s2_1 <- 1.0

28 s2_2 <- 0.6

29 s2_3 <- 0.7

30 s2_4 <- 0.9

31 rho12 <- 0.1

32 rho13 <- -0.5

33 rho14 <- 0.3

34 rho23 <- 0.3

35 rho24 <- -0.4

36 rho34 <- 0.2

37 ## auxiliary function to build and check if the Sigma is

38 ## positive -definite (PD)

39 buildSigma <- function(s2_1, s2_2, s2_3, s2_4,

40 rho12 , rho13 , rho14 , rho23 , rho24 , rho34)

41 {

42 cov12 <- rho12*sqrt(s2_1)*sqrt(s2_2)

43 cov13 <- rho13*sqrt(s2_1)*sqrt(s2_3)

44 cov14 <- rho14*sqrt(s2_1)*sqrt(s2_4)

45 cov23 <- rho23*sqrt(s2_2)*sqrt(s2_3)

46 cov24 <- rho24*sqrt(s2_2)*sqrt(s2_4)

47 cov34 <- rho34*sqrt(s2_3)*sqrt(s2_4)

48 Sigma <- matrix(c(s2_1, cov12 , cov13 , cov14 ,

94

49 cov12 , s2_2, cov23 , cov24 ,

50 cov13 , cov23 , s2_3, cov34 ,

51 cov14 , cov24 , cov34 , s2_4), nrow =4)

52 ## Sigma will only be returned if PD

53 if (

54 is.matrix(chol(Sigma))

55)

56 return(Sigma)

57 }

58 Sigma <- buildSigma(s2_1, s2_2, s2_3, s2_4,

59 rho12 , rho13 , rho14 , rho23 , rho24 , rho34)

60
61 ## generate data via the function datasimu () from APPENDIX C, to make it

62 ## simpler , you may save the function in a file and then load in the

63 ## current section

64 source('datasimu.R')

65 dat <- datasimu(J=J, cs=cs, time=time ,

66 Z=Z, S=Sigma , delta=delta ,

67 beta=beta , gamma=gamma , w=w, seed1=1, seed2 =2)

68 y <- as.matrix(dat%>%dplyr:: select(y1:y3))

69
70 ## latent -effects matrix U filled with zeros (initial guesses)

71 ## ncol has to be 2 or 4, depending of the chosen MODEL

72 U <- matrix(0, nrow=J, ncol =4)

73 ## the model fit per se starts now

74 obj <- TMB:: MakeADFun(data=list(Y=y, Z=Z, time=time , delta=delta),

75 parameters=list(beta1 =beta['beta1 '],

76 beta2 =beta['beta2 '],

77 gama1 =gamma['gamma1 '],

78 gama2 =gamma['gamma2 '],

79 w1 =w['w1'],

80 w2 =w['w2'],

81 logs2_1=log(s2_1),

82 logs2_2=log(s2_2),

83 logs2_3=log(s2_3),

84 logs2_4=log(s2_4),

85 rhoZ12 =atanh(rho12),

86 rhoZ13 =atanh(rho13),

87 rhoZ14 =atanh(rho14),

88 rhoZ23 =atanh(rho23),

89 rhoZ24 =atanh(rho24),

90 rhoZ34 =atanh(rho34),

91 U =U),

92 DLL=dll , random='U', hessian=TRUE , silent=TRUE)

93 opt <- with(obj , nlminb(par , fn, gr))

SOURCE: The author (2021).

95

APPENDIX E – MODEL PARAMETERS BIAS WITH 2.5% AND 97.5% QUANTILES

FIGURE 32 – PARAMETER β1 BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

FIGURE 33 – PARAMETER β2 BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

96

FIGURE 34 – PARAMETER γ1 BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

FIGURE 35 – PARAMETER γ2 BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

97

FIGURE 36 – PARAMETER w1 BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

FIGURE 37 – PARAMETER w2 BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

98

FIGURE 38 – PARAMETER log(σ2
1) BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

FIGURE 39 – PARAMETER log(σ2
2) BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

99

FIGURE 40 – PARAMETER log(σ2
3) BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

FIGURE 41 – PARAMETER log(σ2
4) BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

100

FIGURE 42 – PARAMETER z(ρ12) BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

FIGURE 43 – PARAMETER z(ρ34) BIAS WITH 2.5% AND 97.5% QUANTILES

SOURCE: The author (2021).

101

FIGURE 44 – PARAMETERS {z(ρ13), z(ρ24), z(ρ14), z(ρ23)} BIAS WITH 2.5% AND 97.5%
QUANTILES

SOURCE: The author (2021).

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	
	
	List of Figures
	List of ALGORITHMs
	Contents
	Introduction
	GOALS
	General goals
	Specific goals

	JUSTIFICATION
	LIMITATION
	THESIS ORGANIZATION

	Generalized linear mixed models: formulation, optimization, and implementation
	FORMULATION: OBTAINING A JOINT LIKELIHOOD FUNCTION
	MARGINALIZATION: LAPLACE APPROXIMATION AND ALTERNATIVES
	OPTIMIZATION: MARGINAL LIKELIHOOD FUNCTION
	AD: AUTOMATIC DIFFERENTIATION
	Forward Mode
	Reverse Mode

	TMB: TEMPLATE MODEL BUILDER

	multiGLMM: a multinomial GLMM for clustered competing risks data
	CLUSTER-SPECIFIC CUMULATIVE INCIDENCE FUNCTION (CIF)
	MODEL SPECIFICATION
	Parametrization

	simulation studies
	SIMULATING FROM THE MODEL
	SIMULATION STUDIES DESIGN

	Results
	SIMULATION STUDY

	Discussion
	ADDITIONAL CONSIDERATIONS
	FUTURE WORKS

	Bibliography
	Appendix
	 APPENDIX
	ANALYTIC GRADIENT OF THE LATENT EFFECTS FOR THE JOINT LOG-LIKELIHOOD FUNCTION OF THE MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA
	ANALYTIC HESSIAN OF THE LATENT EFFECTS FOR THE JOINT LOG-LIKELIHOOD FUNCTION OF THE MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA
	R CODE TO SIMULATE FROM A multiGLMM WITH TWO COMPETING CAUSES AND CLUSTERS OF SIZE TWO. FOR MORE INFORMATION CHECK SECTION 4.1
	C++ CODES FOR THE TMB IMPLEMENTATION OF THE multiGLMM COMPLETE MODEL'S SPECIAL CASES
	C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A 22 LATENT STRUCTURE ON THE RISK LEVEL
	C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A 22 LATENT STRUCTURE ON THE TRAJECTORY TIME LEVEL
	C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A BLOCK-DIAG 44 LATENT STRUCTURE
	R CODE SHOWING HOW TO LOAD AND FIT THE multiGLMM VERSIONS

	MODEL PARAMETERS BIAS WITH 2.5% AND 97.5% QUANTILES

