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Giving context: defining where we are and what we did

Object

• Handle clustered competing risks data (a kind of failure time data)
through the cumulative incidence function (CIF).

Goal

• Perform maximum likelihood estimation in terms of a full likelihood formulation
based on Cederkvist et al. (2019)’s CIF specification (Scheike’s).

Contribution

• The full likelihood formulation is in terms of a generalized linear mixed model (GLMM) -
a conditional approach (with fixed and random/latent effects);

• The optimization and inference are tacked down via an efficient model implementation
with the use of state-of-art computational libraries (Kristensen et al. (2016)’s TMB).
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Clustered competing risk data

Key ideas:

1 Clustered: groups with a dependence
structure (e.g. families);

2 Causes competing by something;

3 Occurrence time of this something.
Something?

• Failure of an industrial
or electronic component;

• Occurrence or cure of a
disease or some biological
process;

• Progress of a
patient clinic state.

Independent of the application, always the same framework

Cluster ID Cause 1 Cause 2 Censorship Time Feature
1 1 Yes No No 10 A
1 2 No No Yes 8 A
2 1 No No Yes 7 B
2 2 No Yes No 5 A
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Big picture: Failure time data/time-to-event outcomes
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Failure time process Competing risks process Multistate process

Same methodologies,
different names.

Survival analysis Biomedical studies;
Reliability analysis Industrial life testing.

A comprehensive reference is Kalbfleisch and Prentice (2002)’s book.
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Modeling clustered competing risks data

What? Why? How?
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Modeling failure time data

First of all, we have to choose which scale we model the survival experience.

1 Usually, is in the

hazard (failure rate) scale : λ(t | features) = λ0(t)× c(features). (1)

We have a Equation 1 for each competing cause.

The cluster dependence is something actually not measured. . .

Not measured dependence→ random/latent effects→ Frailty models.

Frailty-based models for (multiple) survival experiences turn out in challengeable likelihood
functions with inference routines mostly done via
• Elaborated and slow

expectation–maximization (EM) algorithms;
• Inefficient Markov chain Monte

Carlo (MCMC) schemes.

2 Not usually, the probability scale.
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Probability scale→ Cause-specific CIF
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All CIFs sum up to 1

i.e., CIF = P[ failure time 6 t , a given cause | features & latent effects ].

Common applications: family studies.�

Keywords: within-family/cluster dependence; age at disease onset; populations.
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Formally,

for a cause-specific of failure k ,
the cumulative incidence function (CIF) is defined as

Fk (t | x) = P[T 6 t , K = k | x ]

=

∫ t

0
fk (z | x) dz (fk (t | x) is the (sub)density for the time to a type k failure)

=

∫ t

0
λk (z | x)︸ ︷︷ ︸

cause-specific
hazard function

S(z | x)︸ ︷︷ ︸
overall
survival
function

dz, t > 0, k = 1, . . . , K .

Again, a comprehensive reference is Kalbfleisch and Prentice (2002)’s book.

Here, we use the same CIF specification of Cederkvist et al. (2019).
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Cederkvist et al. (2019)’s CIF specification

For two competing causes of failure,
the cause-specific CIFs are specified in the following manner

Fk (t | x , u1, u2, ηk ) = πk (x , u1, u2)︸ ︷︷ ︸
cluster-specific

risk level

×Φ[wkg(t) − xγk − ηk ]︸ ︷︷ ︸
cluster-specific

failure time trajectory

, t > 0, k = 1, 2, (2)

with

1 πk (x , u) = exp{xβk + uk }
/(

1 +
∑K−1

m=1 exp{xβm + um}
)

, k = 1, 2, K = 3;

2 Φ(·) is the cumulative distribution function of a standard Gaussian distribution;

3 g(t) = arctanh(2t/δ− 1), t ∈ (0, δ), g(t) ∈ (−∞, ∞).

In Cederkvist et al. (2019), this CIF specification is modeled under a pairwise
composite likelihood approach (Lindsay 1988; Varin, Reid, and Firth 2011).
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Our contribution: a full likelihood analysis
For two competing causes of failure, a subject i , in the cluster j , in time t , we have

yijt | {u1j , u2j ,η1j ,η2j }︸ ︷︷ ︸
latent effects

∼ Multinomial(p1ijt , p2ijt , p3ijt)


u1
u2
η1
η2

 ∼
Multivariate

Normal




0
0
0
0

 ,


σ2

u1
cov(u1, u2) cov(u1,η1) cov(u1,η2)

σ2
u2

cov(u2,η1) cov(u2,η2)

σ2
η1

cov(η1,η2)

σ2
η2




pkijt =
∂

∂t
Fk (t | x , u,ηk )

=
exp{xkijβk + ukj }

1 +
∑K−1

m=1 exp{xmijβm + umj }

× wk
δ

2δt − 2t2 φ

(
wkarctanh

(
t − δ/2
δ/2

)
− xkijγk − ηkj

)
, k = 1, 2.

(3)
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Simulating from the model
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Marginal likelihood function for two competing causes

L(θ; y) =
J∏

j=1

∫
<4
π(yj | r j)× π(r j) dr j

=

J∏
j=1

∫
<4

{ nj∏
i=1

nij∏
t=1

(
(
∑K

k=1 ykijt)!
y1ijt ! y2ijt ! y3ijt !

K∏
k=1

pykijt
kijt

)
︸ ︷︷ ︸

fixed effect component

}
×

(2π)−2|Σ|−1/2 exp
{
−

1
2

r>j Σ
−1r j

}
︸ ︷︷ ︸

latent effect component

dr j

=

J∏
j=1

∫
<4

{ nj∏
i=1

nij∏
t=1

K∏
k=1

pykijt
kijt︸ ︷︷ ︸

fixed effect

}
(2π)−2|Σ|−1/2 exp

{
−

1
2

r>j Σ
−1r j

}
︸ ︷︷ ︸

latent effect component

dr j , (4)

with pkijt from Equation 3 and where θ = [β γ w σ2 ρ]> is the parameters vector.
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TMB: Template Model Builder

Kristensen et al. (2016).

An R (R Core Team 2021) package for the quickly implementation of complex
random effect models through simple C++ templates.

Workflow
1 Write your objective function in a .cpp through a #include <TMB.hpp>;

2 Compile and load it in R via TMB::compile() and base::dyn.load(TMB::dynlib());

3 Compute your objective function derivatives with obj <- TMB::MakeADFun();

4 Perform the model fitting, opt <- base::nlminb(obj$par, obj$fn, obj$gr);

5 Compute the parameters standard deviations, TMB::sdreport(obj).
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TMB: Template Model Builder

Key features:

1 Automatic differentiation;
The state-of-art in derivatives
computation

2 Laplace approximation.
An efficient fashion to approximate the
latent effect integrals

A code example:

For details about TMB, AD, and Laplace approximation: Laureano (2021).
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Simulation study model designs

Risk model
Latent effects only on the risk level
i.e.,

Σ =

[
σ2

u1
covu1,u2

σ2
u2

]
.

Time model
Latent effects only on the failure
time trajectory level i.e.,

Σ =

[
σ2
η1

covη1,η2

σ2
η2

]
.

Block-diag model
Latent effects on the risk and time levels
without cross-correlations i.e.,

Σ =


σ2

u1
covu1,u2 0 0
σ2

u2
0 0
σ2
η1

covη1,η2

σ2
η2

 .

Complete model
A complete latent effects structure
i.e.,

Σ =


σ2

u1
covu1,u2 covu1,η1 covu1,η2

σ2
u2

covu2,η1 covu2,η2

σ2
η1

covη1,η2

σ2
η2

 .
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Simulation study setup
Four latent effects structures:

1 Risk model; 2 Time model; 3 Block-diag
model;

4 Complete
model.

Two CIF configurations:

Low max incidence ≈ 0.15; High max incidence ≈ 0.60.

For each of those 4× 2 = 8 scenarios, we vary the sample and cluster sizes:

5000 data points
• 2500 clusters of size 2;
• 1000 clusters of size 5;
• 500 clusters of size 10.

30000 data points
• 15000 clusters of size 2;
• 6000 clusters of size 5;
• 3000 clusters of size 10.

60000 data points
• 30000 clusters of size 2;
• 12000 clusters of size 5;
• 6000 clusters of size 10.

8× 3× 3 = 72 scenarios.
For each scenario, we simulate 500 samples. 72× 500 = 36000 model fittings.
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Simulation study results

First of all, the time.

• The non-complete models (2D Laplace aprox.) are kind of fast,
taking always less than 5 min.

• In the most expensive scenarios (30K 4D Laplaces),
the complete model takes 30 min.
In a full R implementation with 10K 4D Laplaces, it took 30hrs. TMB is fast.

• We also did a Bayesian analysis via Stan/NUTS-HMC (Stan Development Team 2020).
• 1 week of parallelized processing for a 2500 size 2 clusters scenario with tuned NUTS.

This just reinforces the MCMC impracticability for some complex models.

Parameters estimation.

• The non-complete models fail to learn the data.
They appear to be not structured enough to capture the data characteristics.
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Some simulation study results
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Some simulation study results
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Some simulation study results
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Some simulation study results
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Simulation study results: High CIF scenario
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Simulation study results: Low CIF scenario
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Take-home message

The complete model works.

1 It works better in the high CIF scenarios;

2 As expected, as the sample size increases the results get better;

3 We do not see any considerable performance difference between
cluster/family sizes;

4 Satisfactory full likelihood analysis under the maximum likelihood
estimation framework.

What else can we do?

1 We can try a marginal approach e.g., an McGLM (Bonat and Jørgensen 2016);

2 We can also try a copula (Embrechts 2009), on maybe two fronts:
1) for a full specification; 2) to accommodate the within-cluster dependence.

For more read Laureano (2021) master thesis.
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Thanks for watching and have a great day

Special thanks to

PPGMNE
Programa de Pós-Graduação em
Métodos Numéricos em Engenharia

Joint work with

Wagner H. Bonat
http://leg.ufpr.br/~wagner

Joint work with

Paulo Justiniano Ribeiro Jr.
http://leg.ufpr.br/~paulojus

henriquelaureano.github.io
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