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Giving context: defining where we are and what we did @

Object

¢ Handle clustered competing risks data (a kind of failure time data)
through the cumulative incidence function (CIF).

Goal

e Perform maximum likelihood estimation in terms of a full likelihood formulation
based on Cederkvist et al. (2019)’s CIF specification (Scheike’s).

Contribution

¢ The full likelihood formulation is in terms of a generalized linear mixed model (GLMM) -
a conditional approach (with fixed and random/latent effects);

¢ The optimization and inference are tacked down via an efficient model implementation
with the use of state-of-art computational libraries (Kristensen et al. (2016)’s TMB).
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@ Data
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Clustered competing risk data

Key ideas:

© Clustered: groups with a dependence @ Causes competing by something;

ALOCCR IR ©® Occurrence time of this something.

Something?

e QOccurrence or cure of a
disease or some biological
process;

¢ Failure of an industrial
or electronic component;

* Progress of a
patient clinic state.

Independent of the application, always the same framework

Cluster ID Cause1 Cause2 Censorship Time Feature
1 1 Yes No No 10 A
1 2 No No Yes 8 A
2 1 No No Yes 7 B
2 2 No Yes No 5 A
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Big picture: Failure time data/time-to-event outcomes

Failure time process Competing risks process Multistate process

0 > 1 1 1
42
0
: 0 > (2

Same methodologies, Survival analysis Biomedical studies;
different names. Reliability analysis Industrial life testing.

§ A comprehensive reference is Kalbfleisch and Prentice (2002)’s book.
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® Model
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Modeling clustered competing risks data

What? How?
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Modeling failure time data

First of all, we have to choose which scale we model the survival experience.
© Usually, is in the

hazard (failure rate) scale :  A(t| features) = Ag(t) x c(features). (1)
We have a Equation 1 for each competing cause.

The cluster dependence is something actually not measured. ..

Not measured dependence — random/latent effects — Frailty models.

Frailty-based models for (multiple) survival experiences turn out in challengeable likelihood
functions with inference routines mostly done via

e Elaborated and slow e |nefficient Markov chain Monte
expectation—maximization (EM) algorithms; Carlo (MCMC) schemes.

@ Not usually, the probability scale.
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Probability scale — Cause-specific CIF @

Cumulative Incidence Function (CIF) All CIFs sumupto 1
1.00-
0.15-
° > 0.75-
(8] i = R
g 0.10 — Causel & ,qp. M Censorship
] 3 0. Bl Cause 2
3] = Cause2 ©
£ 0.05- & M Cause 1l
: 0.25-
0'00- l ' ' ' ' l 0'00- '
30 40 50 60 70 80
Time Time

i.e., CIF =P[failure time < t, a given cause | features & latent effects ].

Common applications: family studies.

L. Keywords: within-family/cluster dependence; age at disease onset; populations.
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Formally,

for a cause-specific of failure k,
the cumulative incidence function (CIF) is defined as

Fe(t| x)=P[T <t K=k| x|

t
J fx(z| x)dz (fc(t| x) is the (sub)density for the time to a type k failure)

~ O

J M(z | x) S(z|x)dz, t>0, k=1, ..., K.
O S—sm— S——
cause-specific  overall

hazard function survival
function

= Again, a comprehensive reference is Kalbfleisch and Prentice (2002)’s book.
@ Here, we use the same CIF specification of Cederkvist et al. (2019).
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Cederkvist et al. (2019)’s CIF specification

For two competing causes of failure,
the cause-specific CIFs are specified in the following manner

Fr(t]x, uy, Uz, nk) = Tix(X, Uy, Up) X Dweg(t) — Xvk —mkl, t>0, k=1,2, (2)

cluster-specific cluster-specific
risk level failure time trajectory

with
© 7 (x,u) =exp{xBx + uk}/ (1 + Z,,K;} exp{xBm + um}> , k=1,2  K=3;
® O(.) is the cumulative distribution function of a standard Gaussian distribution;

® g(t) =arctanh(2t/5—1), te(0,6), g(t) € (—oo, o).

S2n Cederkvist et al. (2019), this CIF specification is modeled under a pairwise
composite likelihood approach (Lindsay 1988; Varin, Reid, and Firth 2011).

12/34



Our contribution: a full likelihood analysis

For two competing causes of failure, a subject /, in the cluster j, in time t, we have

Yiit [ {tj, Uz, m1j, M2} ~ Multinomial(pyjit, Pait, Psijt)

latent effects

U 0] [o%, cov(uy,up) cov(up,my) cov(u,m2)
Uz| _Multivariate | |0 0%,  cov(up,mi) cov(up,ny)
n Normal 0|’ o5, cov(ny, n2)
N2 0 02,

0
Prijt = aFk(f | X, u,m)
_ exp{Xx;iBx + Uk}
1+ Y 52} exXp{XmjBim + Uy}
5 t—5/2
X ka [0) <Wkarctanh (6/2) — Xk Yk —ﬂkj> , k=1,2.
3)
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Simulating from the model

0.15- 0.0075-
0.10- == C|F1 0.0050- == dCIF 1
= CIF 2 == dCIF 2
0.05- 0.0025-
000- ' ' ' ' ' ' OOOOO- ' ' ' ' ' '
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Time Time
Cause 1 ‘ | Cause 2 | | Censorship

{ Turns out in

Turns out in | Turns out in
0.002%'s of data 0.003%'s of data 0.995%'s of data

002 003 004000 00l 002 003 0.04 096 097 098 099 1.00
Probability

bindwidth=0.0025
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Marginal likelihood function for two competing causes

:g

L(6;y) = Jw ni(y; | ) x m(r;) dr;

[ {11 T ((EEum 1) ).

i1 11 Yiit! Yeii! yaijt! e

1

~.
Il

I
:::j <

j=1

fixed effect component

(27[)_2|Z|_1/2exp{ ;Tz }dr,

latent effect component

J N ’
=11 J {H HHP{Z?} (2m) 2|z 1/zexr){ S r,}dr,, (4)

j=1 =1 t=1 k=1

fixed effect latent effect component

with pg;¢ from Equation 3 and where 8 = [3 v w o? p]T is the parameters vector.
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© TMB: Template Model Builder
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TMB: Template Model Builder

§ Kristensen et al. (2016).

An R (R Core Team 2021) package for the quickly implementation of complex
random effect models through simple C++ templates.

Workflow
© Write your objective function in a . cpp through a #include <TMB.hpp>;
@ Compile and load it in R via TMB: : compile () and base: :dyn.load(TMB: :dynlib());
©® Compute your objective function derivatives with obj <- TMB: :MakeADFun();
@ Perform the model fitting, opt <- base::nlminb(obj$par, obj$fn, obj$gr);
© Compute the parameters standard deviations, TMB: : sdreport (obj).
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TMB: Template Model Builder

Key features:

© Automatic differentiation; @ Laplace approximation.
The state-of-art in derivatives An efficient fashion to approximate the
computation latent effect integrals

lude <TMB.hpp:

A code example:

% For details about TMB, AD, and Laplace approximation: Laureano (2021).
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O Simulation study
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Simulation study model designs

Risk model

Latent effects only on the risk level
i.e.,

2
T = [Gm COVU1,U2:| .

2
0'u2

Block-diag model

Latent effects on the risk and time levels
without cross-correlations i.e.,

2
() covzhu2 0 0
s _ 04, 2 0
On, COVny 2

n2

Time model

Latent effects only on the failure
time trajectory level i.e.,

2

© COVny mo
Z:[m e

On,

Complete model

A complete latent effects structure
ie.,

2

o COVL211 w2 COVuymy  COVuym,
T = Gu2 COViup,my  COVipmp
= 2
Ony  COVnyme
o2

n2
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Simulation study setup

Four latent effects structures:

@ Risk model; ® Time model; © Block-diag O Complete

model; model.
Two CIF configurations:

Low max incidence =~ 0.15; High max incidence ~ 0.60.

For each of those 4 x 2 = 8 scenarios, we vary the sample and cluster sizes:

5000 data points 30000 data points 60000 data points
e 2500 clusters of size 2; ¢ 15000 clusters of size 2; ¢ 30000 clusters of size 2;
e 1000 clusters of size 5; e 6000 clusters of size 5; e 12000 clusters of size 5;
e 500 clusters of size 10. e 3000 clusters of size 10. e 6000 clusters of size 10.

8 x 3 x 3 =72 scenarios.
For each scenario, we simulate 500 samples. 72 x 500 = 36000 model fittings.
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Simulation study results

First of all, the time.

e The non-complete models (2D Laplace aprox.) are kind of fast,
taking always less than 5 min.

¢ In the most expensive scenarios (30K 4D Laplaces),
the complete model takes 30 min.

In a full R implementation with 10K 4D Laplaces, it took 30hrs. TMB is fast.
e We also did a Bayesian analysis via Stan/NUTS-HMC (Stan Development Team 2020).

* 1 week of parallelized processing for a 2500 size 2 clusters scenario with tuned NUTS.
This just reinforces the MCMC impracticability for some complex models.

Parameters estimation.

* The non-complete models fail to learn the data.
They appear to be not structured enough to capture the data characteristics.
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Some simulation study results

Parameter: (3,
with + 1.96 standard deviations
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Some simulation study results

Parameter: log(c?)
with + 1.96 standard deviations
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Some simulation study results

Parameter: z(p;,)

with + 1.96 standard deviations
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Some simulation study results

Parameter: z(ps4)

with + 1.96 standard deviations
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Some simulation study results

Complete model's cross-correlations

with + 1.96 standard deviations
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Simulation study results: High CIF scenario

CIF of failure cause 1
True curve in dashed black
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Simulation study results: Low CIF scenario

0.3

0.2

0.1

0.0

0.25
0.20
0.15
0.10
0.05

0.00

CIF of failure cause 1
True curve in dashed black

[ RISKMODEL || TIMEMODEL |[BLOCK-DIAG MODEL|| COMPLETE MODEL

_—

Pl S
] =
e —— ,”/—'——

30 40 50 60 70 8030 40 50 60 70 8030 40 50 60 70 8030 40 50 60 70 80
Time

CIF of failure cause 2
True curve in dashed black

RISKMODEL ||  TIME MODEL | [BLOCK-DIAG MODEL| | COMPLETE MODEL

a o

30 40 50 60 70 8030 40 50 60 70 8030 40 50 60 70 8030 40 50 60 70 80
Time

== cs02-05k
== ¢s02-30k
¢s02-60k
¢s05-05k
¢s05-30k
¢s05-60k
cs10-05k
== ¢s10-30k
== ¢s10-60k

29/34



©® Conclusion
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Take-home message

The complete model works.
© It works better in the high CIF scenarios;
@ As expected, as the sample size increases the results get better;

@ We do not see any considerable performance difference between
cluster/family sizes;

@ Satisfactory full likelihood analysis under the maximum likelihood
estimation framework.

What else can we do?
© We can try a marginal approach e.g., an McGLM (Bonat and Jergensen 2016);

@ We can also try a copula (Embrechts 2009), on maybe two fronts:
1) for a full specification; 2) to accommodate the within-cluster dependence.

=V For more read Laureano (2021) master thesis.
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Thanks for watching and have a great day @

Special thanks to

. PPGMNE
Programa de Pés-Graduacao em
Métodos Numéricos em Engenharia

@ Wagner H. Bonat Paulo Justiniano Ribeiro Jr.

capes U F IP IR nhttp://leg.ufpr.br/~wagner  http:/leg.ufpr.br/~paulojus

Joint work with

p & henriquelaureano.github.io
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